



# IN ACCORDANCE WITH ISO 14025 Environmental product declaration



**Owner of the declaration:** Aven Holmestrand AS

**Program holder and publisher:** The Norwegian EPD foundation

Declaration number: NEPD-8376-7993-EN

Registration Number: NEPD-8376-7993-EN

EPD Software: Aven EPD generator Manufacturer: Aven Holmestrand AS

**Product:** 1200\*1200 4v Item number: 126

**Issue date:** 06.12.2024

Valid to: 06.12.2029

### **General information**

#### Product:

1200\*1200 4v

#### **Program Operator:**

The Norwegian EPD Foundation Post Box 5250 Majorstuen, 0303 Oslo, Norway Phone: +47 23 08 82 92 E-mail: post@epd-norge.dk

#### **Declaration Number:**

NEPD-8376-7993-EN

#### Comparability

EPDs from other programmes than The Norwegian EPD Foundation may not be comparable. In addition, EPDs of construction products and other type of products may not be comparable if they do not comply with EN 15804:2012+A2:2019.

#### This declaration is based on PCR:

NPCR 023:2021 Packaging product and services V. 1.1

#### Statements:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer, life cycle assessment data and evidences.

#### **Declared Unit:**

One produced unit of packaging

#### General information on verification of EPD from EPD tools:

Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Individual third party verification of each EPD is not required when the EPD tool is i)integrated into the company's environmental management system, ii)the procedures for use of the EPD tool are approved by EPD Norway, and iii)the process is reviewed annually. See Appendix G of EPD-Norway's General Programme Instructions for further information on EPD tools.

#### Verification of EPD tool:

Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPD Norway's procedures and guidelines for verification and approval of EPD tools.

Martin Erlandsson (No signature required) IVL Swedish Environmental Research Institute Independent verifier approved by EPD-Norway

#### **Owner of Declaration:**

Aven Holmestrand AS Contact Person: Svein Olav Munthe Phone: +47 951 82 667 E-mail: post@aven.no

#### Manufacturer:

Aven Holmestrand AS Sørbyveien 17, 3083 Holmestrand, Norway

Place of Production:

Holmestrand, Norway.

Management System: ISO 9001, 14001 & 45001

Organization Number 916494777

Issue date: 06.12.2024

Valid to: 06.12.2029

Year of the study: 2021-2022

#### Development and verification of EPD:

The declaration has been developed and verified using the AVEN EPD tool ver 1.0, developed by NIRAS A/S. The EPD tool is a reference flow tool based on the recipe approach and has been approved by EPD Norway.

**Developer of EPD:** 

Martin Klausen

**Reviewer of company specific input data and EPD:** Lena Nerdrum

Approved by Managing Director

2/9

### Product:

#### **Product Description:**

The wooden pallet is a type of packaging product, which is used in logistics for transporting products of various kinds between product manufacturers, retailers and consumers, as well as for warehouse storage and other operations.

The properties of the wooden pallets differ with regard to length, width, height, weight and approved safe working load. That means the number of boards, nails and blocks used in each pallet type of pallet differ, while the type of materials used are the same. Both wooden blocks and chipboard blocks are used.

#### **Product Specification:**

The main product components are listed in the table below for 1 unit of 1200\*1200 4v per declared unit.

| Materials        | Amount (kg) | Share (%) |
|------------------|-------------|-----------|
| Spruce Boards    | 7,06        | 73,86 %   |
| Chipboard Blocks | 2,47        | 25,80 %   |
| Steel Nails      | 0,03        | 0,33 %    |
| Total            | 9,56        | 100,00 %  |

#### **Technical Data:**

The manufactured pallet has the dimensions 1200x1200mm and most of the wood used is FSC® and PEFC Certified

#### Market:

The product included in this EPD is considered representative for a Norwegian scenario. The majority of suppliers are located in Nordic countries and Germany.

#### **Reference service life, product:**

No RSL is declared. This EPD is based on a crade-to-gate with options assessment and does not include the use stage.

### **LCA: Calculation Rules**

#### **Declared Unit:**

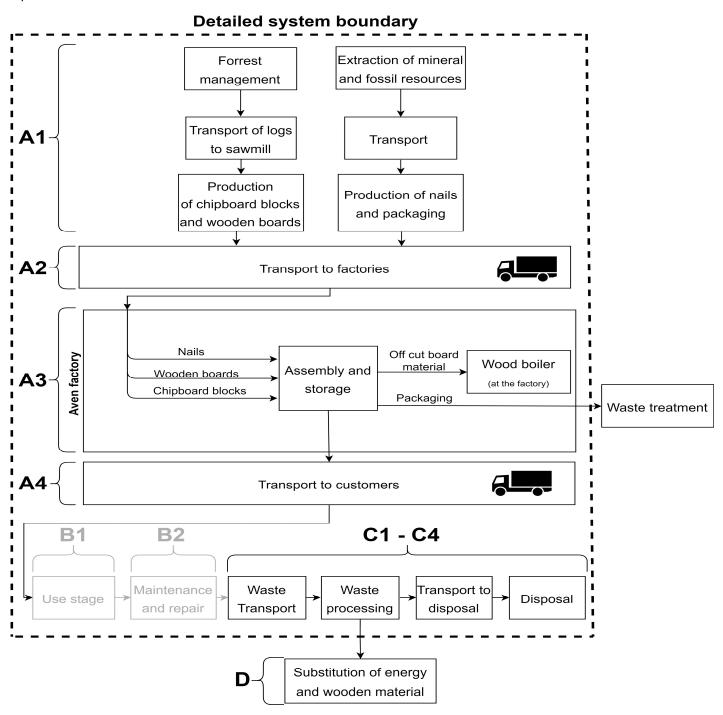
One produced unit of packaging: 1200\*1200 4v

#### **Data Quality:**

Data is overall considered very good and all major processes are represented with data of good quality in compliance with the criteria from ISO 14044 and ISO 14025. Data for raw material quantities, origin of supply, raw material production processes taking place at Aven facilities are provided by reports for the calendar years 2021 - 2022.

Generally, the background datasets are of high quality. Almost all are from Europe and energy is country specific. The majority of the datasets are only a couple of years old and the technologies are well represented. According to the requirements of EN15804, specific manufacturer data has been used for the processes that the manufacturer has direct influence over in their production/processing facility. Generic data has been used for the upstream processes.

#### Allocation:


All environmental burdens associated with forestry activities (no use of HVOs assumed) are allocated to the wooden logs and none have been attributed to the waste products from forestry (branches and tops). Byproducts resulting in the downstream process (e.g. at the sawmill factory, etc.), which are sold as products themselves, are attributed the burdens of the forestry activities and transport from forests to sawmill by mass allocation, in accordance with EN 15804:2012+A2:2019.

#### System Boundary:

The system boundary comprises cradle-to-gate with options and thus covers the modules for product stage, supply, end-of-life stage and supplementary information (A1-A3, A4, C1-C4 and D).

#### **Cut-Off Criteria**

The general rules for the exclusion of inputs and outputs follows the requirements in EN 15804+A2, 6.3.5, where the total of neglected input flows per module shall be a maximum of 5% of energy usage and mass and 1% of energy usage and mass for unit processes.



### LCA: Scenarios and Additional Technical Information

The following information describe the scenarios in the different modules of the EPD.

#### Transport Scenarios (A4 + C1):

The following information describe the scenarios in the different modules of the EPD. The A4 module represents transport between Aven Holmestrand's pallet factory in Holmestrand and a specific customer. As this EPD is generated by a reference flow tool, there are three predefined options for transport. A given A4 transport distance of 0 thus implies that no transport of the given option takes place.

The C1 module represents collection of waste in addition to transport for recycling and energy recovery. Expert judgement has been used to derive transport distances for end-of-life modules.

| Module | Type of Vehicle      | Capacity utilisation<br>(incl. return) [%] | Distance<br>[km] | Energy/Fuel<br>Consumption | Unit   | Value | Unit |
|--------|----------------------|--------------------------------------------|------------------|----------------------------|--------|-------|------|
| A4     | Lorry >32 t, EURO6   | 46,9%                                      | 210              | 2,30E-02                   | l/tkm  | 4,83  | l/t  |
| A4     | Ferry                | 50,0%                                      | 0                | 1,92E-03                   | l/tkm  | 0,00  | l/t  |
| A4     | Freigh train         | 45,0%                                      | 0                | 1,08E-01                   | MJ/tkm | 0,00  | MJ/t |
| C1     | Lorry 16-32 t, EURO5 | 32,9%                                      | 85               | 4,49E-02                   | l/tkm  | 3,81  | l/t  |

#### End-of-Life (C2):

Waste processing of wood is assumed to be distributed between 83,1% energy recovery by municipal inceration, 10,8% recycling through chipping, and 6,1% landfill. Waste processing of steel nails is intended for 100% recycling. Expert judgement has been used in deriving waste scenarios for end-of-life modules.

| Туре                     | Unit | Value |
|--------------------------|------|-------|
| Hazardous waste disposed | kg   | 0,00  |
| Reuse                    | kg   | 0,00  |
| To Landfill              | kg   | 0,58  |
| Recycling                | kg   | 1,06  |
| Energy recovery          | kg   | 7,92  |

#### Benefits and loads beyond the system boundaries (D):

The benefits and loads beyond system boundaries are calculated from the net flows sent to incineration and recycling. Recovered energy from incineration substitutes an average Norwegian electricity mix and average district heating from unconstrained sources (primarily biomass and electricity while excluding waste incineration) based on Statistics Norway (2021).

| Туре                         | Unit | Value |
|------------------------------|------|-------|
| Substitution of electricity  | kWh  | 6,28  |
| Substitution of heat         | MJ   | 84,83 |
| Substitution of wooden chips | kg   | 1,03  |
| Substitution of steel        | kg   | 0,02  |

### LCA: Results

The following section lists the environmental impact and resource consumption calculated according to EN 15804 +A2:2019. Results are presented per declared unit. Reading example: 9,0 E-03 = 9,0\*10-3 = 0,009

| System boundaries (X=Included, MIND=module not declared): |           |               |                 |              |             |                   |                  |                          |          |                                            |
|-----------------------------------------------------------|-----------|---------------|-----------------|--------------|-------------|-------------------|------------------|--------------------------|----------|--------------------------------------------|
| Product stage                                             |           |               | Supply<br>Stage | Use          | stage       | End of life stage |                  |                          |          | Benefits & loads beyond system boundary    |
| Raw material<br>extraction                                | Transport | Manufacturing | Transport       | Distribution | Maintenance | Waste transport   | Waste processing | Transport to<br>disposal | Disposal | Reuse-Recovery-<br>Recycling-<br>potential |
| A1                                                        | A2        | A3            | A4              | B1           | B2          | C1                | C2               | C3                       | C4       | D                                          |
| Х                                                         | Х         | Х             | Х               | MND          | MND         | X<br>5/9          | Х                | Х                        | Х        | Х                                          |
|                                                           |           |               |                 |              |             | 5/9               |                  |                          |          |                                            |

#### System boundaries (X=included, MND=module not declared):

| Core environmental impact | indicators: |           |          |          |          |          |          |           |
|---------------------------|-------------|-----------|----------|----------|----------|----------|----------|-----------|
| Indicator                 | Unit        | A1-A3     | A4       | C1       | C2       | C3       | C4       | D         |
| GWP-total                 | kg CO2 eq   | -1,22E+01 | 3,34E-01 | 2,42E-01 | 1,47E+01 | 7,93E-03 | 1,12E+00 | -9,26E-01 |
| GWP-fossil                | kg CO2 eq   | 3,24E+00  | 3,34E-01 | 2,41E-01 | 1,82E-01 | 7,92E-03 | 4,73E-03 | -8,74E-01 |
| GWP-biogenic              | kg CO2 eq   | -1,55E+01 | 3,01E-04 | 2,18E-04 | 3,95E-03 | 7,15E-06 | 1,11E+00 | -4,92E-02 |
| GWP-luluc                 | kg CO2 eq   | 6,48E-03  | 1,31E-04 | 9,48E-05 | 2,01E-04 | 3,11E-06 | 1,23E-06 | -2,92E-03 |
| ODP                       | kg CFC11 eq | 3,91E-07  | 7,73E-08 | 5,59E-08 | 1,22E-08 | 1,83E-09 | 1,81E-09 | -7,31E-08 |
| AP                        | mol H+ eq   | 2,19E-02  | 1,36E-03 | 9,80E-04 | 1,66E-03 | 3,22E-05 | 4,24E-05 | -8,18E-03 |
| EP-freshwater             | kg P eq     | 1,01E-03  | 2,15E-05 | 1,55E-05 | 1,13E-04 | 5,10E-07 | 8,45E-07 | -2,84E-04 |
| EP-marine                 | kg N eq     | 5,31E-03  | 4,08E-04 | 2,95E-04 | 7,40E-04 | 9,67E-06 | 2,17E-04 | -1,96E-03 |
| EP-terrestrial            | mol N eq    | 6,74E-02  | 4,46E-03 | 3,22E-03 | 7,03E-03 | 1,06E-04 | 1,75E-04 | -2,90E-02 |
| РОСР                      | kg NMVOC eq | 1,70E-02  | 1,37E-03 | 9,87E-04 | 1,75E-03 | 3,24E-05 | 6,35E-05 | -5,60E-03 |
| ADP-minerals&metals       | kg Sb eq    | 2,99E-05  | 1,16E-06 | 8,39E-07 | 5,48E-07 | 2,75E-08 | 1,65E-08 | -8,32E-06 |
| ADP-fossil                | MJ          | 4,99E+01  | 5,05E+00 | 3,65E+00 | 2,46E+00 | 1,20E-01 | 1,30E-01 | -1,21E+01 |
| WDP                       | m3 depriv.  | 2,77E+00  | 1,51E-02 | 1,09E-02 | 3,78E-02 | 3,59E-04 | 6,27E-04 | -3,50E-01 |

Core environmental impact indicators:

*GWP-total*: Global Warming Potential; *GWP-fossil*: Global Warming Potential fossil fuels; *GWP-biogenic*: Global Warming Potential biogenic; *GWP-LULUC*: Global Warming Potential and use and land use change; *ODP*: Depletion potential of the stratospheric ozone layer; *AP*: Acidification potential, Accumulated Exceedance; *EP-freshwater*: Eutrophication potential, fraction of nutrients reaching freshwater end compartment; See "additional Norwegian requirements" for indicator given as PO4 eq. *EP-marine*: Eutrophication potential, fraction of nutrients reaching freshwater end compartment; *EP-terrestial*: Eutrophication potential, Accumulated Exceedance; *POCP* : Formation potential of tropospheric ozone; *ADP- M&M* : Abiotic depletion potential for non-fossil resources (minerals and metals); *ADP-fossil*: Abiotic depletion potential for fossil resources; *WDP*: Water deprivation potential, deprivation weighted water counsumption

#### Additional environmental impact indicators:

| Indicator | Unit         | A1-A3    | A4       | C1       | C2       | C3       | C4       | D         |
|-----------|--------------|----------|----------|----------|----------|----------|----------|-----------|
| PM        | disease inc. | 6,29E-07 | 2,87E-08 | 2,08E-08 | 1,47E-08 | 6,81E-10 | 9,44E-10 | -9,25E-08 |
| IRP       | kBq U-235 eq | 2,93E-01 | 2,59E-02 | 1,88E-02 | 4,61E-02 | 6,15E-04 | 7,96E-04 | -2,13E-01 |
| ETP-fw    | CTUe         | 1,28E+00 | 3,03E-01 | 2,19E-01 | 1,93E-02 | 7,19E-03 | 7,55E-03 | -2,04E-01 |
| HTP-c     | CTUh         | 1,21E-08 | 1,28E-10 | 9,22E-11 | 3,37E-10 | 3,03E-12 | 3,76E-12 | -1,38E-09 |
| HTP-nc    | CTUh         | 5,73E-08 | 4,14E-09 | 2,99E-09 | 1,47E-08 | 9,81E-11 | 1,19E-10 | -2,88E-08 |

PM: Particulate matter emissions; IRP: Ionising radiation, human health; ETP-fw: Ecotoxicity (freshwater); ETP- c: Human toxicity, cancer effects; HTPnc: Human toxicity, non-cancer effects

#### Classification of disclaimers to the declaration of core & additional environmental impact indicators:

| ILCD classification | Indicator                                                                                   | Disclaimer |
|---------------------|---------------------------------------------------------------------------------------------|------------|
| ILCD type / level 1 | Global warming potential (GWP)                                                              | None       |
|                     | Depletion potential of the stratospheric ozone layer (ODP)                                  | None       |
|                     | Potential incidence of disease due to PM emissions (PM)                                     | None       |
| ILCD type / level 2 | Acidification potential, Accumulated Exceedance (AP)                                        | None       |
|                     | Eutrophication potential, Fraction of nutrients reaching freshwater end compartment         | None       |
|                     | Eutrophication potential, Fraction of nutrients reaching marine end compartment (EP-marine) | None       |
|                     | Eutrophication potential, Accumulated Exceedance (EP-terrestrial)                           | None       |
|                     | Formation potential of tropospheric ozone (POCP)                                            | None       |
|                     | Potential Human exposure efficiency relative to U235 (IRP)                                  | 1          |
| ILCD type / level 3 | Abiotic depletion potential for non-fossil resources (ADP-minerals&metals)                  | 2          |
|                     | Abiotic depletion potential for fossil resources (ADP-fossil)                               | 2          |
|                     | Water (user) deprivation potential, deprivation-weighted water consumption (WDP)            | 2          |
|                     | Potential Comparative Toxic Unit for ecosystems (ETP-fw)                                    | 2          |
|                     | Potential Comparative Toxic Unit for humans (HTP-c)                                         | 2          |
|                     | Potential Comparative Toxic Unit for humans (HTP-nc)                                        | 2          |
|                     | Potential Soil quality index (SQP)                                                          | 2          |

Disclaimer 1 – This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities.
Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.
Disclaimer 2 – The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator.

#### **Resource Use:**

| Indicator | Unit | A1-A3    | A4       | C1       | C2        | С3       | C4        | D         |
|-----------|------|----------|----------|----------|-----------|----------|-----------|-----------|
| RPEE      | MJ   | 2,03E+01 | 7,11E-02 | 5,14E-02 | 3,13E-01  | 1,69E-03 | 5,81E-03  | 0,00E+00  |
| RPEM      | MJ   | 1,36E+02 | 0,00E+00 | 0,00E+00 | -1,35E+02 | 0,00E+00 | -8,79E+00 | 0,00E+00  |
| TPE       | MJ   | 1,57E+02 | 7,11E-02 | 5,14E-02 | -1,35E+02 | 1,69E-03 | -8,79E+00 | 0,00E+00  |
| NRPE      | MJ   | 3,05E+01 | 5,05E+00 | 3,65E+00 | 2,46E+00  | 1,20E-01 | 1,30E-01  | 0,00E+00  |
| NRPM      | MJ   | 1,94E+01 | 0,00E+00 | 0,00E+00 | -1,94E+01 | 0,00E+00 | 0,00E+00  | 0,00E+00  |
| TRPE      | MJ   | 4,99E+01 | 5,05E+00 | 3,65E+00 | -1,69E+01 | 1,20E-01 | 1,30E-01  | 0,00E+00  |
| SM        | kg   | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00  | 0,00E+00 | 0,00E+00  | 0,00E+00  |
| RSF       | MJ   | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00  | 0,00E+00 | 0,00E+00  | 0,00E+00  |
| NRSF      | MJ   | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00  | 0,00E+00 | 0,00E+00  | 0,00E+00  |
| W         | m³   | 1,36E-01 | 5,62E-04 | 4,07E-04 | 3,07E-03  | 1,33E-05 | 1,65E-04  | -3,30E-01 |

**RPEE** Renewable primary energy resources used as energy carrier; **RPEM** Renewable primary energy resources used as raw materials; **TPE** Total use of renewable primary energy resources used as energy carrier; **NRPM** Non renewable primary energy resources used as energy carrier; **NRPM** Non renewable primary energy resources used as materials; **TRPE** Total use of non renewable primary energy resources; **SM** Use of secondary materials; **RSF** Use of renewable secondary fuels; **NRSF** Use of non renewable secondary fuels; **W** Use of net fresh water.

#### End-of-Life - Waste:

| Indicator | Unit | A1-A3    | A4       | C1       | C2       | C3       | C4       | D         |
|-----------|------|----------|----------|----------|----------|----------|----------|-----------|
| HW        | kg   | 8,31E-05 | 1,32E-05 | 9,53E-06 | 1,64E-05 | 3,13E-07 | 1,60E-07 | -1,46E-05 |
| NHW       | kg   | 1,21E+00 | 2,60E-01 | 1,88E-01 | 6,05E-02 | 6,16E-03 | 5,83E-01 | -3,37E-01 |
| RW        | kg   | 1,69E-04 | 3,41E-05 | 2,47E-05 | 1,35E-05 | 8,10E-07 | 8,45E-07 | -6,25E-05 |

HW Hazardous waste disposed; NHW Non hazardous waste disposed; RW Radioactive waste disposed

#### End-of-Life - Output Flow:

| Indicator | Unit | A1-A3    | A4       | C1       | C2       | С3       | C4       | D        |
|-----------|------|----------|----------|----------|----------|----------|----------|----------|
| CR        | kg   | 0,00E+00 |
| MR        | kg   | 0,00E+00 | 0,00E+00 | 0,00E+00 | 1,03E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 |
| MER       | kg   | 0,00E+00 | 0,00E+00 | 0,00E+00 | 7,92E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 |
| EEE       | MJ   | 0,00E+00 |
| ETE       | MJ   | 0,00E+00 |

*CR* Components for reuse; *MR* Materials for recycling; *MER* Materials for energy recovery; *EEE* Exported electric energy; *ETE* Exported thermal energy

#### Information describing the biogenic carbon at factory gate:

| Biogenic Carbon Content                               | Unit | Value |
|-------------------------------------------------------|------|-------|
| Biogenic carbon content in product                    | kg C | 4,24  |
| Biogenic carbon content in the accompanying packaging | kg C | 0,00  |

Note: 1 kg C is equivalent of 44/12  $CO_2$ 

### **Additional Norwegian Requirements:**

#### Greenhouse gas emission from the use of electricity in the manufacturing phase:

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing prosess (A3) based on ecoinvent 3.8.

| National electricity grid                              | Unit          | Amount   |
|--------------------------------------------------------|---------------|----------|
| Electricity, low voltage {NO}  market for   Cut-off, U | kg CO2 eq/kWh | 2,68E-02 |

#### Hazardous Substances:

The declaration is based upon reference to threshold values and/or test results and/or material safety data sheets provided to EPD verifiers. Documentation available upon request to EPD owner.

The product contains no substances given by the REACH Candidate list or the Norwegian priority

The product contains substances given by the REACH Candidate list or the Norwegian

The product contain dangerous substances, more than 0,1% by weight, given by the

 $\Box$  The product contains no substances given by the REACH Candidate list or the Norwegian priority list. The product is classified as hazardous waste (Avfallsforskiften, Annex III), see

#### **Carbon Footprint:**

Carbon footprint has not been worked out for the product.

### **Bibliography:**

| ISO 14025:2010                  | Environmental labels and declarations - Type III environmental declarations - Principles and procedures                                 |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| ISO 14044:2006                  | Environmental management - Life cycle assessment - Requirements and guidelines                                                          |
| EN 15804:2012+A2:2019           | Sustainability of construction works - Environmental product declaration - Core rules for the product category of construction products |
| CEN/TR 13910                    | Packaging - Report on criteria and methodologies for life cycle analysis of packaging                                                   |
| The Norwegian EPD<br>Foundation | NPCR 023:2021 Packaging products and services issue date: 20.12.2021 and valid to: 15.07.2024. Version 1.1                              |
| Aven Holmestrand AS             | Environmental Product Declaration – Pallets. Background Report, Aven Holmestrand AS, 1 May 2022, revised Dec 2022                       |
| Statistics Norway               | District Heating and District Cooling: Consumption of fuel used for gross production of district heating, 2021                          |

|                         | Programme operator and publisher    | Phone:  | +47 23 08 80 00               |
|-------------------------|-------------------------------------|---------|-------------------------------|
| Clobal program operator | The Norwegian EPD Foundation        | Fax:    | -                             |
|                         | Post Box 5250 Majorstuen, 0303 Oslo | E-mail: | post@epd-norge.no             |
|                         | Norway                              | Web:    | www.epd-norge.no              |
| Aven                    | Owner of the decleration            | Phone:  | +47 33 06 65 60               |
|                         | Aven Holmestrand AS                 | Fax:    | -                             |
|                         | Sørbyveien 17, 3083 Holmestrand     | E-mail: | post@aven.no                  |
|                         | Norway                              | Web:    | www.aven.no                   |
| NIRAS                   | Author of the life cycle assesment  | Phone:  | +45 96 30 64 00               |
|                         | NIRAS A/S                           | Fax:    | -                             |
|                         | Østre Havnegade 12, 9000 Aalborg    | E-mail: | aalborg@niras.dk              |
|                         | Denmark                             | Web:    | www.niras.dk                  |
| NIRAS                   | Developer of EPD generator          | Phone:  | +45 96 30 64 00               |
|                         | NIRAS A/S                           | Fax:    | -                             |
|                         | Østre Havnegade 12, 9000 Aalborg    | E-mail: | aalborg@niras.dk              |
|                         | Denmark                             | Web:    | www.niras.dk                  |
| ECO PLATFORM            | ECO Platform                        | Phone:  | -                             |
|                         | ECO Platform                        | Fax:    | -                             |
|                         |                                     | E-mail: | office@eco-platform.org       |
|                         |                                     | Web:    | https://www.eco-platform.org/ |

## EPD for the best environmental decision

The Norwegian EPD foundation www.epd-norge.no

