

Environmental product declaration

in accordance with ISO 14025 and EN 15804+A2

Sense driver 900mA Dali

Owner of the declaration: SG Armaturen AS

Product: Sense driver 900mA Dali

Declared unit: 1 pcs

The Norwegian EPD Foundation

This declaration is based on Product Category Rules: CEN Standard EN 15804:2012+A2:2019 serves as core PCR IBU PCR - Part B for luminaires, lamps, and components for luminaires **Program operator:** The Norwegian EPD Foundation

Declaration number:

NEPD-8208-7888-EN

Registration number:

NEPD-8208-7888-EN

Issue date: 22.11.2024

Valid to: 22.11.2029

EPD software: LCAno EPD generator ID: 676842

General information

Product

Sense driver 900mA Dali

Program operator:

The Norwegian EPD Foundation Post Box 5250 Majorstuen, 0303 Oslo, Norway Phone: +47 977 22 020 web: www.epd-norge.no

Declaration number:

NEPD-8208-7888-EN

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core PCR IBU PCR - Part B for luminaires, lamps, and components for luminaires

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit:

1 pcs Sense driver 900mA Dali

Declared unit with option:

A1,A2,A3,A4,A5,B6,C1,C2,C3,C4,D

Functional unit:

1 Sense driver 900mA Dali manufactured and installed, including waste treatment at end-of-life.

General information on verification of EPD from EPD tools:

Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Verification of each EPD is made according to EPD-Norway's guidelines for verification and approval requiring that tools are i) integrated into the company's environmental management system, ii) the procedures for use of the EPD tool are approved by EPD-Norway, and iii) the process is reviewed annually by an independent third party verifier. See Appendix G of EPD-Norway's General Programme Instructions for further information on EPD tools

Verification of EPD tool:

Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPDNorway's procedures and guidelines for verification and approval of EPD tools. Approval number: NEPDT41.

Third party verifier:

Vito D'Incognito, Take Care International

(no signature required)

Owner of the declaration:

SG Armaturen AS Contact person: Audun Skare Phone: +47 90021243 e-mail: audun.skare@sg-as.no

Manufacturer:

SG Armaturen AS Skytterheia 25 4790 Lillesand, Norway

Place of production:

SG Armaturen production site Dong Guan (China) No. 96 Wen Quan South Road, Shi Long Information Industrial Park 523325 Dong Guan, China

Management system:

Organisation no:

958560931

Issue date:

22.11.2024

Valid to: 22.11.2029

Year of study:

2023

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

Development and verification of EPD:

The declaration is created using EPD tool lca.tools ver EPD2021.09, developed by LCA.no. The EPD tool is integrated in the company's management system, and has been approved by EPD Norway. NEPDT63

Developer of EPD: Eva Linn Jenssen

Reviewer of company-specific input data and EPD: Audun Skare

Approved:

Håkon Hauan Managing Director of EPD-Norway

Product

Product description:

The sense driver is an acessory to most Sense panels and is installed together with the selected luminaire.

System Wattage: 32.0 W. Voltage: 220-240V. Max. luminaires per circuit breaker: B10: 35, B16: 55, C10: 55, C16: 91. Lifetime: 100,000. Control/Dimming: DALI / Push Dim. Driver: 900 mA. Luminiare class: Class II. Housing: Plastic. Height: 29.0mm. Length: 138.0 mm. Width: 67.0 mm. EAN: 7021988204047

Please note that the above has been calculated with the Norwegian Energy-mix. If you want an EPD with a specific energy-mix, please send us a request.

Product specification

Materials	kg	%
Electronic - Cable	0,01	4,45
Electronic - Connector	0,01	6,04
Electronic - LED driver	0,17	69,25
Electronic - Wire	0,01	2,98
Plastic - Polyamide	0,04	16,45
Plastic - Polyvinyl chloride (PVC)	0,00	0,66
Таре	0,00	0, 18
Total	0,24	100,00
Packaging	kg	%
Packaging - Cardboard	0,07	94,01
Packaging - Recycled paper	0,00	5,99
Total incl. packaging	0,32	100,00

Technical data:

Link to product data on our website: https://www.sg-as.com/products/sense-pro-300x1200/820404/pdf/specification_820404.pdf

Link to CE Declaration:

https://www.sg-as.com/assets/product/default/data/703075_Sense%20Pro/50/703075_Sense%20Pro.pdf

Market:

Nordic + Northwestern Europe

Reference service life, product

The declared service life of the products is 100 000 hours.

Reference service life, building or construction works

60 years. Standard service life for buildings to the PCR Part A of EPD Norway.

LCA: Calculation rules

Declared unit:

1 pcs Sense driver 900mA Dali

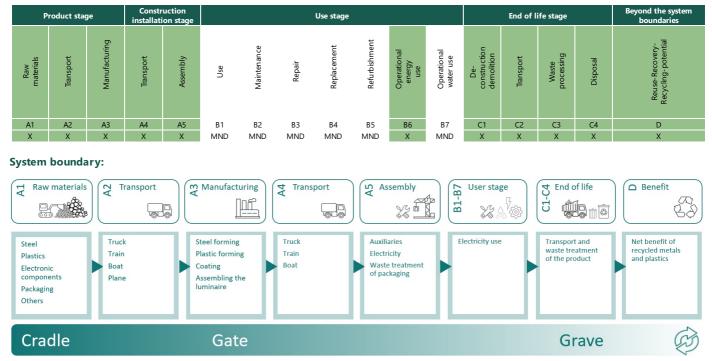
Cut-off criteria:

All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) can be excluded. These cut-off criteria do not apply for hazardous materials and substances.

Allocation:

The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

Data quality:


Specific data for the product composition are provided by the manufacturer. The data represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on EPDs according to EN 15804 and different LCA databases. The data quality of the raw materials in A1 is presented in the table below.

Materials	Source	Data quality	Year
Electronic - Cable	ecoinvent 3.6	Database	2019
Electronic - Connector	Material composition + ecoinvent 3.6	Supplier data + database	2019
Electronic - LED driver	Material composition + ecoinvent 3.6	Supplier data + database	2019
Electronic - Wire	Material composition + ecoinvent 3.6	Supplier data + database	2019
Packaging - Cardboard	Modified ecoinvent 3.6	Database	2019
Packaging - Recycled paper	Modified ecoinvent 3.6	Database	2019
Plastic - Polyamide	ecoinvent 3.6	Database	2019
Plastic - Polyvinyl chloride (PVC)	Product composition + ecoinvent 3.6	Supplier data + database	2019
Таре	ecoinvent 3.6	Database	2019

System boundaries (X=included, MND=module not declared, MNR=module not relevant)

Additional technical information:

Link to Mounting instruction on our website:

https://www.sg-

 $as.com/assets/product/default/data/703075_Sense\%20Pro/20/7021988204047_Sense\%204000Im\%20Driver\%20Kit\%20DALI_user\%20manual.pdf$

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD. Scenario: Office

Module A4 = Transportation by truck (40 km) from the production site in Dong Guan, China to the harbor. After this the goods are transported by ship (19000 km) from Dong Guan, China to Hamburg, Germany. Then with a truck (650 km) from Hamburg, Germany to the warehouse in Lillesand, Norway or to the warehouse in Mechelen, Belgium + 800 km for Nordic / Northwestern Europe Market.

Module A5 = Installation is performed in the Nordic / Northwestern Europe Market and done by manual labor, with the use of electrical machines, that fall under the cut-off criteria of 1% and is therefore neglected. Packaging of the final product consist of a corrugated board box.

Module B6 = The operational energy use of the luminaire is calculated based on the methodology provided in IBU PCR Part B for luminaires, lamps, and components for luminaires. The energy consumption model for luminaire used in the PCR follows the application scenarios developed in EN 15193:2007. To calculate the electricity use of the luminaire, the following scenario parameters have been applied:

- Active power of the luminaire (Pa) = 32 watt
- Passive power of the luminaire (Pp) = 0.5 watt
- Daylight time usage (tD) = 2250 hours
- Non-daylight time usage (tN) = 250 hours
- Standard year time (ty) = 8760 hours
- The occupancy depency factor (FO) = 1
- The daylight dependency factor (FD) = 0.9
- The product specific constant illuminance factor (FCP) = 1
- The non-daylight dimming factor (FN) = 1
- The application specific empiric lifetime of the luminaire in years (a) = 15 years (corresponding to the reference service life of the product).

Module C1 = The de-installation of the luminaire is done by manual labor, with the help of electrical machines. The use of portable electrical devices (e.g., drill) usually have low energy requirements falling under the cut-off-criterion of 1% and is therefore neglected.

Module C2 = Transportation from building site to the waste treatment facility with an average distance of 300km.

Modules C3 and C4 = Waste treatment of the product follows the default values provided in EN 50693, Product Category Rules for life cycle assessments of electronic and electrical products and systems, table G.4. This table specified how different types of raw materials used in A1 will likely be treated during the end-of-life of the product. Waste treatments in C3 include material recycling and incineration with and without energy recovery and fly ash extraction. Disposal in C4 consist of landfilling of different waste fractions and of ashes.

Module D = The recyclability of metals, plastics, and electronic components allows the producers a credit for the net scrap that is produced at the end of a product's life. The benefits from recycling of net scrap are described in formula from EN 15804:2012+A2:2019. Substitution of heat and electricity generated by the incineration with energy recovery of plastic insulation and other parts is also calculated in module D.

Transport from production place to user (A4)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Ship, Freight, Transoceanic (km)	65,0 %	19000	0,003	l/tkm	57,00
Truck, 16-32 tonnes, EURO 6 (km) - Europe	36,7 %	1450	0,043	l/tkm	62,35
Truck, 16-32 tonnes, EURO 6 (km) - Rest of World	38,8 %	40	0,044	l/tkm	1,76
Assembly (A5)	Unit	Value			
Waste, packaging, corrugated board box, with recycled content, to average treatment (kg) - A5 including transport	kg	0,07			
Waste, packaging, paper printed, 100% recycled content, to average treatment (kg) - Global - A5, incl. 85 km transp	kg	0,00			
Operational energy (B6)	Unit	Value			
Electricity, Norway (kWh)	kWh	1157,70			
Transport to waste processing (C2)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, 16-32 tonnes, EURO 6 (km) - Rest of World	38,8 %	300	0,044	l/tkm	13,20

Waste processing (C3)	Unit	Value		
Waste treatment of plastic mixture, incineration with energy recovery and fly ash extraction (kg)	kg	0,06		
Waste treatment per kg used electronic components, manual seperation (kg)	kg	0,20		
Copper to recycling (kg)	kg	0,01		
Steel to recycling (kg)	kg	0,00		
Waste treatment per kg used PWB, shredding and separation - C3 (kg)	kg	0,11		
Waste treatment per kg electronics scrap from PWB, with components, recycling of metals C3 (kg)	kg	0,06		

Disposal (C4)	Unit	Value	
Landfilling of ashes from incineration of Plastic mixture, process per kg ashes and residues (kg)	kg	0,00	
Landfilling of plastic mixture (kg)	kg	0,06	
Landfilling of copper (kg)	kg	0,00	
Landfilling of steel (kg)	kg	0,00	
Landfilling of hazardous waste (kg)	kg	0,06	
Benefits and loads beyond the system boundaries (D)	Unit	Value	
Substitution of electricity (MJ)	MJ	0,09	
Substitution of thermal energy, district heating (MJ)	MJ	1,38	
Substitution of primary copper with net scrap (kg)	kg	0,01	
Substitution of primary steel with net scrap (kg)	kg	0,00	
Substitution of primary metals with net scrap from PWB, with components (kg)	kg	0,02	

LCA: Results

The LCA results are presented below for the declared unit defined on page 2 of the EPD document.

Environme	ental impact							
(The second seco	Indicator	Unit		A1	A2	A3	A4	A5
P	GWP-total	kg CO ₂ -	eq	1,08E+01	6,34E-03	1,22E-01	1,34E-01	1,28E-01
P	GWP-fossil	kg CO ₂ -	eq	1,09E+01	6,34E-03	1,22E-01	1,34E-01	1,22E-03
Ð	GWP-biogenic	kg CO ₂ -	eq	-8,89E-02	2,47E-06	3,04E-05	4,74E-05	1,27E-01
P	GWP-luluc	kg CO ₂ -	eq	1,86E-02	2,32E-06	1,92E-05	6,65E-05	4,02E-07
Ò	ODP	kg CFC11	-eq	6,24E-06	1,38E-09	1,79E-09	2,94E-08	2,56E-10
(F)	АР	mol H+ -	eq	8,54E-02	1,90E-05	6,38E-04	2,06E-03	5,75E-06
	EP-FreshWater	kg P -ee	9	1,37E-03	5,95E-08	2,71E-06	8,52E-07	9,98E-09
	EP-Marine	kg N -e	q	1,36E-02	3,73E-06	1,32E-04	4,95E-04	1,90E-06
	EP-Terrestial	mol N -e	eq	1,53E-01	4,18E-05	1,45E-03	5,52E-03	2,06E-05
	POCP	kg NMVOC	-eq	5,21E-02	1,56E-05	3,82E-04	1,49E-03	5,92E-06
E a	ADP-minerals&metals ¹	kg Sb-e	q	3,47E-03	1,70E-07	3,77E-07	2,55E-06	2,96E-08
B	ADP-fossil ¹	MJ		1,37E+02	9,37E-02	1,08E+00	1,89E+00	1,70E-02
<u>@</u>	WDP ¹	m ³		3,76E+02	3,05E-02	1,76E-01	1,25E+00	2,15E-02
	Indicator	Unit	B6	C1	C2	C3	C4	D
P	GWP-total	kg CO ₂ -eq	2,82E+01	0,00E+00	1,61E-02	1,92E-01	1,88E-02	-9,70E-01
P	GWP-fossil	kg CO ₂ -eq	2,73E+01	0,00E+00	1,61E-02	1,92E-01	1,87E-02	-9,65E-01
P	GWP-biogenic	kg CO ₂ -eq	7,55E-01	0,00E+00	6,28E-06	1,07E-04	1,12E-05	-2,72E-03
P	GWP-luluc	kg CO ₂ -eq	1,13E-01	0,00E+00	5,90E-06	1,20E-04	1,07E-04	-1,66E-03
Ò	ODP	kg CFC11 -eq	1,87E-06	0,00E+00	3,51E-09	3,88E-09	8,09E-10	-5,82E-04
Ê	АР	mol H+ -eq	2,13E-01	0,00E+00	4,83E-05	2,52E-04	6,17E-05	-6,22E-02
	EP-FreshWater	kg P -eq	1,96E-03	0,00E+00	1,51E-07	1,77E-06	5,49E-07	-3,43E-04
	EP-Marine	kg N -eq	2,34E-02	0,00E+00	9,50E-06	5,45E-05	1,99E-05	-3,15E-03
÷	EP-Terrestial	mol N -eq	3,05E-01	0,00E+00	1,06E-04	6,02E-04	1,42E-04	-4,35E-02
	РОСР	kg NMVOC -eq	8,21E-02	0,00E+00	3,98E-05	1,65E-04	6,72E-05	-1,24E-02
55D	ADP-minerals&metals ¹	kg Sb-eq	2,04E-03	0,00E+00	4,33E-07	4,57E-07	7,49E-08	-1,44E-03
Ð	ADP-fossil ¹	MJ	3,73E+02	0,00E+00	2,38E-01	5,74E-01	1,48E-01	-1,26E+01

GWP-total = Global Warming Potential total; GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment: EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

1. The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

Remarks to environmental impacts

The product is compliant with the European RoHS Directive 2011/65/EU on Restriction of the use of certain Hazardous Substances in Electrical and Electronic equipment and with the European REACH regulation (EC) no 1907/2006 on Registration, Evaluation, Authorization and Restriction of Chemicals.

Additional er	nvironmental impac	t indicators						
	Indicator	Unit		A1	A2	A3	A4	A5
	PM	Disease incidence		5,68E-07	4,07E-10	8,61E-09	4,72E-09	8,40E-11
(***) 2	IRP ²	kgBq U235 -eq		4,77E-01	3,89E-04	9,35E-04	8,18E-03	7,27E-05
	ETP-fw ¹	CTUe		8,50E+02	7,59E-02	3,17E+00	1,28E+00	2,27E-02
44. ****	HTP-c ¹	CTUh		1,16E-08	0,00E+00	3,40E-11	0,00E+00	0,00E+00
4 <u>8</u>	HTP-nc ¹	CTUh		5,23E-07	7,30E-11	1,50E-09	9,41E-10	2,90E-11
٢	SQP ¹	dimensionless	dimensionless		6,42E-02	2,29E-01	9,10E-01	1,14E-02
l.	ndicator	Unit	B6	C1	C2	C3	C4	D
	PM	Disease incidence	1,53E-06	0,00E+00	1,04E-09	1,66E-09	1,13E-09	-1,26E-07
(***) E	IRP ²	kgBq U235 -eq	6,76E+00	0,00E+00	9,90E-04	2,90E-03	2,71E-04	-4,68E-02
	ETP-fw ¹	CTUe	1,70E+03	0,00E+00	1,93E-01	1,29E+00	3,53E+00	-4,44E+02
44.* ****	HTP-c ¹	CTUh	8,10E-08	0,00E+00	0,00E+00	9,72E-10	5,40E-11	-2,23E-09
48 E	HTP-nc ¹	CTUh	1,91E-06	0,00E+00	1,90E-10	5,70E-08	3,92E-10	-1,59E-07
	SQP ¹	dimensionless	1,88E+02	0,00E+00	1,63E-01	1,44E-01	3,91E-01	-1,00E+01

PM = Particulate Matter emissions; IRP = Ionizing radiation – human health; ETP-fw = Eco toxicity – freshwater; HTP-c = Human toxicity – cancer effects; HTP-nc = Human toxicity – non cancer effects; SQP = Potential Soil Quality Index (dimensionless)

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009"

*INA Indicator Not Assessed

1. The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

2. This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

Resource use									
	Indicator		U	nit	A1	A2	A3	A4	A5
ș. G	PERE		Ν	Ŋ	1,45E+01	1,06E-03	1,09E-01	2,14E-02	2,80E-04
æ	PERM		N	Ŋ	4,77E-01	0,00E+00	0,00E+00	0,00E+00	-4,77E-01
° ₹ ₁	PERT		Ν	NJ	1,50E+01	1,06E-03	1,09E-01	2,14E-02	-4,76E-01
B	PENRE		Ν	NJ	1,33E+02	9,37E-02	1,08E+00	1,89E+00	1,70E-02
4a	PENRM		Ν	Ŋ	3,70E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
IA	PENRT		Ν	۱۱	1,37E+02	9,37E-02	1,08E+00	1,89E+00	1,70E-02
	SM		k	g	1,58E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00
	RSF		MJ		3,08E-01	2,07E-05	9,56E-05	7,06E-04	9,28E-06
Ū.	NRSF		MJ		2,71E-02	1,76E-04	9,00E-04	3,78E-03	3,83E-05
69	FW		m	n ³	1,14E-01	1,05E-05	2,95E-03	1,62E-04	8,02E-06
	dicator	U	Init	B6	C1	C2	C3	C4	D
i i i i i i i i i i i i i i i i i i i	PERE	١	MJ	4,83E+03	0,00E+00	2,70E-03	7,71E-02	4,78E-02	-1,89E+00
1 I								,	
	PERM	٦	U	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
*** * *	PERM		UN LIN	0,00E+00 4,83E+03	0,00E+00 0,00E+00	0,00E+00 2,70E-03	0,00E+00 7,71E-02		
i de la constante de la consta		1						0,00E+00	0,00E+00
	PERT	۹ ۱	μJ	4,83E+03	0,00E+00	2,70E-03	7,71E-02	0,00E+00 4,78E-02	0,00E+00 -1,89E+00
B	PERT PENRE	1 1 1	LN LN	4,83E+03 3,73E+02	0,00E+00 0,00E+00	2,70E-03 2,38E-01	7,71E-02 5,74E-01	0,00E+00 4,78E-02 1,48E-01	0,00E+00 -1,89E+00 -1,26E+01
J.	PERT PENRE PENRM	۹ ۹ ۹ ۹	IN IN IN	4,83E+03 3,73E+02 0,00E+00	0,00E+00 0,00E+00 0,00E+00	2,70E-03 2,38E-01 0,00E+00	7,71E-02 5,74E-01 -5,07E+00	0,00E+00 4,78E-02 1,48E-01 0,00E+00	0,00E+00 -1,89E+00 -1,26E+01 0,00E+00
	PERT PENRE PENRM PENRT	۹ ۱ ۱ ۱ ۱	UN VN VN VN	4,83E+03 3,73E+02 0,00E+00 3,73E+02	0,00E+00 0,00E+00 0,00E+00 0,00E+00	2,70E-03 2,38E-01 0,00E+00 2,38E-01	7,71E-02 5,74E-01 -5,07E+00 -4,49E+00	0,00E+00 4,78E-02 1,48E-01 0,00E+00 1,48E-01	0,00E+00 -1,89E+00 -1,26E+01 0,00E+00 -1,26E+01
	PERT PENRE PENRM PENRT SM	۹ ۹ ۹ ۱ ۱ ۱	MJ MJ MJ MJ	4,83E+03 3,73E+02 0,00E+00 3,73E+02 0,00E+00	0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00	2,70E-03 2,38E-01 0,00E+00 2,38E-01 0,00E+00	7,71E-02 5,74E-01 -5,07E+00 -4,49E+00 0,00E+00	0,00E+00 4,78E-02 1,48E-01 0,00E+00 1,48E-01 1,23E-03	0,00E+00 -1,89E+00 -1,26E+01 0,00E+00 -1,26E+01 3,72E-03

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non renewable primary energy excluding non-renewable primary energy resources; SENRE = Use of non renewable primary energy resources; SENRE = Use of secondary materials; PENRT = Total use of non renewable primary energy resources; SM = Use of secondary materials; RERT = Total use of non renewable primary energy resources; SM = Use of secondary materials; RERT = Use of non renewable primary energy resources; SM = Use of secondary materials; RERT = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life - Waste									
	Indicator		Ui	nit	A1	A2	A3	A4	A5
Ā	HWD		k	g	4,90E-02	8,46E-06	1,49E-04	9,20E-05	0,00E+00
Ū	NHWD		k	g	1,24E+00	4,50E-03	1,01E-02	5,82E-02	7,51E-02
R	RWD		k	g	3,68E-04	6,15E-07	8,26E-07	1,29E-05	0,00E+00
In	dicator		Unit	B6	C1	C2	C3	C4	D
A	HWD		kg	2,39E-01	0,00E+00	2,15E-05	2,84E-05	5,72E-02	-3,52E-03
Ū	NHWD		kg	2,87E+01	0,00E+00	1,14E-02	3,84E-02	6,18E-02	-1,66E-01
æ	RWD		kg	3,34E-03	0,00E+00	1,56E-06	1,41E-06	9,77E-08	-4,03E-05

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life - Output flow									
Indic	ator	U	nit	A1	A2	A3	A4	A5	
\otimes	CRU	k	g	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	
\$\$D	MFR	k	g	0,00E+00	0,00E+00	3,22E-03	0,00E+00	6,99E-02	
DF	MER	k	kg		0,00E+00	6,94E-04	0,00E+00	3,15E-04	
50	EEE	Ν	MJ		0,00E+00	1,05E-03	0,00E+00	4,30E-03	
DI	EET	Ν	ſJ	0,00E+00	0,00E+00	1,58E-02	0,00E+00	6,50E-02	
Indicator		Unit	B6	C1	C2	C3	C4	D	
\otimes	CRU	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	
3	MFR	kg	0,00E+00	0,00E+00	0,00E+00	8,78E-03	5,06E-06	-1,46E-04	
Þ₹	MER	kg	0,00E+00	0,00E+00	0,00E+00	5,65E-02	1,24E-07	-1,92E-05	
₹Þ	EEE	MJ	0,00E+00	0,00E+00	0,00E+00	8,68E-02	8,03E-06	-4,70E-05	
	EET	MJ	0,00E+00	0,00E+00	0,00E+00	1,31E+00	1,22E-04	-7,11E-04	

CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported energy electrical; EET = Exported energy thermal

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

Biogenic Carbon Content

Indicator	Unit	At the factory gate
Biogenic carbon content in product	kg C	0,00E+00
Biogenic carbon content in accompanying packaging	kg C	3,48E-02

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2

Additional requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Source	Amount	Unit
Electricity, China (kWh)	ecoinvent 3.6	1102,91	g CO2-eq/kWh

Dangerous substances

The product contains no substances given by the REACH Candidate list.

Indoor environment

No effect on indoor environment

Additional Environmental Information

Additional environmental impact indicators required in NPCR Part A for construction products								
Indicator	Unit		A1	A2	A3	A4	A5	
GWPIOBC	kg CO ₂ -eq		1,09E+01	6,34E-03	1,15E-01	1,34E-01	1,22E-03	
Indicator	Unit	B6	C1	C2	C3	C4	D	
GWPIOBC	kg CO ₂ -eq	2,81E+01	0,00E+00	1,61E-02	1,92E-01	1,89E-02	-9,63E-01	

GWP-IOBC: Global warming potential calculated according to the principle of instantaneous oxidation. In order to increase the transparency of biogenic carbon contribution to climate impact, the indicator GWP-IOBC is required as it declares climate impacts calculated according to the principle of instantaneous oxidation. GWP-IOBC is also referred to as GWP-GHG in context to Swedish public procurement legislation.

Bibliography

ISO 14025:2010. Environmental labels and declarations - Type III environmental declarations - Principles and procedures. International Organization for Standardization.

ISO 14044:2006. Environmental management - Life cycle assessment - Requirements and guidelines. International Organization for Standardization.

EN 15804:2012+A2:2019. Environmental product declaration - Core rules for the product category of construction products. European Committee for Standardization.

ISO 21930:2017. Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products. International Organization for Standardization.

EN 50693:2019. Product category rules for life cycle assessments of electronic and electrical products and systems. European Committee for Standardization.

Ecoinvent v3, 2019. Allocation, cut-off by classification. Swiss Centre of Life Cycle Inventories.

lversen et al., (2021). eEPD v2021.09, background information for EPD generator tool system verification, LCA.no. Report number: 07.21. System verification report.

Philis et al., (2022). EPD generator for IBU PCR part B for luminaires, lamps, and components for luminaires, background information for EPD generator application and LCA data, LCA.no. Report number: 04.22. PCR verification report.

EPD Norway (2022). NPCR Part A: Construction products and services. The Norwegian EPD foundation. Version 2.0 published 24.03.2021.

IBU (2017). PCR part B for luminaires, lampes and components for luminaires. Institut Bauen und Umwelt e.V. Version 1.7, published 30.11.2017.

and norgo	Program operator and publisher	Phone: +47 977 22 020
🕲 epd-norge	The Norwegian EPD Foundation	e-mail: post@epd-norge.no
Global program operatør	Post Box 5250 Majorstuen, 0303 Oslo, Norway	web: www.epd-norge.no
sg	Owner of the declaration:	Phone: +47 90021243
	SG Armaturen AS	e-mail: audun.skare@sg-as.nc
	Skytterheia 25, 4790 Lillesand, Norway	web: www.sg-as.com
LCA	Author of the Life Cycle Assessment	Phone: +47 916 50 916
	LCA.no AS	e-mail: post@lca.no
	Dokka 6A, 1671 Kråkerøy, Norway	web: www.lca.no
LCA	Developer of EPD generator	Phone: +47 916 50 916
	LCA.no AS	e-mail: post@lca.no
no	Dokka 6A, 1671 Kråkerøy, Norway	web: www.lca.no
	ECO Platform	web: www.eco-platform.org
	ECO Portal	web: ECO Portal