

ENVIRONMENTAL PRODUCT DECLARATION

Publisher: The Norwegian EPD Foundation Registration number: NEPD-42-43-MRA

In accordance with ISO 14025 and EN 15804 for:

[GTBUILD - Titanium zinc plate]

From

[Taicang Gronsedt Technology Co., Ltd.]

Declared product:

Programme operator:	EPD China					
Registration number:	EPD-CN-00013					
Issued date:	2024-10-21					
Valid until:	2029-10-20					

Programme Information

EDD O	Triang Connect Technology Co. Ltd					
EPD Owner	Taicang Gronsedt Technology Co., Ltd. No.198 Shalu Road, Shaxi Town, Taicang City					
	www.gronsedt.com					
	Info@gronsedt.com					
Product Name	GTBUILD - Titanium zinc plate					
Production Site	No.198 Shalu Road, Shaxi Town, Taicang City					
Identification of product	Manufacture of metal structures					
Field of Application	Construction material					
Programme Operator	EPD China					
	Address of Headquarter: Tianping Road, Xuhui District, Shanghai					
	Website: www.epdchina.cn					
	Email: info@epdchina.cn secretary@epdchina.cn					
LCA Practitioner	Taicang Gronsedt Technology Co., Ltd.					
Responsibility	The EPD owner has the sole ownership, liability, and responsibility for the EPD					
Comparability	EPDs within same category of product in different programme operator are not suggested to be compared. Full conformance with a PCR allows EPD comparability only when all stages of a life cycle have been considered. However, variations and deviations are possible even applying the same PCR.					
Liability	The EPD owner has the sole ownership, liability, and responsibility for the EPD.					
Validity	The EPD is published on 2024-10-21 and valid to 2029-10-20					
LCA Software (version)	SimaPro 9.6.0.1					
LCI Dataset (version)	Ecoinvent 3.10					
Year(s) of Primary Data	01/06/2023-31/05/2024					
PCR	EPDCN-PCR-202204 PCR FOR CONSTRUCTION PRODUCTS AND CONSTRUCTION SERVICES TO EN 15804 V2.0					
Other Reference Document	15804:2012+A2:2019 Sustainability of construction works-Environment product declarations-Core rules for the product category of construction products					
Verification statement accordi	ing EN15804					
Independent verification of th	e declaration and data according to EN ISO 14025:2010					
□ internal ☑ external						
Third-party institution verification	ation: <lihua (shanghai)="" certification="" co.,="" ltd.="" ti="" wen,=""> is an approved certification</lihua>					
body accountable for third-pa	rty verification					
Approved by: EPD China						
Procedure for follow-up of da ☑ Yes □ No	ata during EPD validity involves a third-party certification body:					

General Information

1.1 Company information

Gronsedt Technology is a private, family-owned Danish company group established in 2007. We specialize in the design, production, and sale of stainless steel and aluminum products. Our offerings include both mass-produced products for the construction industry through our GTBUILD division, as well as smaller series and customized products for a variety of industries through our GTINDUSTRY division. With a presence in Europe, Asia, and the Middle East—including our own factories, central warehouse, and distribution center in China—we supply products to customers worldwide, either directly or via our distribution center in Denmark for European clients.

Figure 1: Picture of the company

1.2 Scope and type of EPD

The system boundary in the EPD report is from cradle to grave, including modules A1-A3, A4, A5, C1-C4 and module D.

Table 1: Process stages and and EPD modules.

		DDUC TAGE		CONS TIC PROC STA	ON CESS		USE STAGE END OF LIFE STAGE LOADS					END OF LIFE STAGE				BENEFITSAND LOADSBEYOND THESYSTEM BOUNDARIES	
	Raw material supply	Transport	Production	Transport from the gate to the	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction/ demolition	Transport	Waste processing	Disposal	reuse-recovery- recycling- potential
İ	A1	A2	A3	A4	A5	B1	B2	В3	B4	B5	B6	B 7	C1	C2	С3	C4	D
	X	X	X	X	X	ND	ND	ND	ND	ND	ND	ND	X	X	X	X	X

Note: X=Declared Module, ND=Module not Declared.

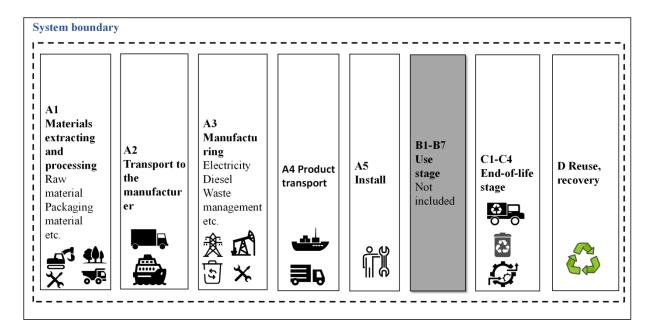


Figure 2: System boundary

2 Detailed Product Description

GTBUILD has developed modern, attractive, and easy-to-install, module-based fascia and bargeboard trim parts, as well as complete systems. These can be used individually or in combination. The products are made of titanium zinc plate, with or without coating, and are available in various thicknesses and dimensions.

These products ensure a maintenance-free construction for many years, making them suitable for both new builds and renovations. The design concept involves mounting a long-lasting metal profile on top of wooden fascias, bargeboards, façade sections, and other house constructions where water ingress or exposure is undesirable.

Additionally, these products provide protection against the ingress of mice, rats, birds, and other small animals into small spaces within house constructions. They also serve a decorative function, enhancing the aesthetics of modern housing designs.

The following table lists the models and specifications of the GTBUILD - Titanium zinc plate product.

Table 1 Product model and specification

	Model and specification								
Name	Model No.	Thickness (mm)	Length (mm)	Width (mm)					
	TPZ	0.65	500-1000	70-850					
GTBUILD - Titanium zinc plate	TPX	0.65	500-1000	90-550					
	TMS	0.65	500-1000	70-850					

The declared unit is: 1 kilogram of product

Figure 3: Picture of the declared product.

Figure 4: The production process in selected stages.

Table 3: Main product components and packaging materials per unit.

Product components	Weight, kg	Weight-%				
Titanium zinc plate	1.03	103%				
TOTAL	1.03	103%				
Packaging materials	Weight, kg	Weight-% (versus the product)				
Plastic wrap	0.00205	0.205%				
PET packing belt	0.000370	0.037%				
Steel strap packing band	0.00123	0.123%				
Pallet	0.0373	3.73%				
Box	0.0410	4.10%				
TOTAL	0.08195	8.195%				

Dangerous substances

The products do not contain any of the substances of very high concern (SVHC) for authorisation regulated by the Regulation (EC) No 1907/2006 (REACH) or the Regulation (EC) No 1272/2008 of European parliament.

3 LCA results according to EN 15804

3.1 Environmental Impacts

The LCA results of GTBUILD - Titanium zinc plate metal per declared unit is listed as the table.

Table3: Environmental impacts according to EN 15804.

RESULTS OF THE LCA	- ENVIRON	NMENTA	L IMPAC	CT per fur	ectional or	declared	unit		
Core indicator	Unit	A1-A3	A4	A5	C1	C2	С3	C4	D
Global Warming Potential total (GWP-total)	[kg CO ₂ eq.]	5.75E+00	2.26E-01	8.75E-03	0.00E+00	1.56E-02	2.13E-01	0.00E+00	-5.14E-01
Global Warming Potential fossil fuels (GWP-fossil)	[kg CO ₂ eq.]	5.59E+00	2.26E-01	7.24E-03	0.00E+00	1.56E-02	2.06E-01	0.00E+00	-5.11E-01
Global Warming Potential biogenic (GWP-biogenic)	[kg CO ₂ eq.]	2.69E-01	-6.48E-05	-1.23E-01	0.00E+00	9.19E-07	6.99E-03	0.00E+00	-1.23E-03
Global Warming Potential land use and land use change (GWP-luluc)	[kg CO ₂ eq.]	1.28E-02	1.16E-04	6.39E-06	0.00E+00	6.37E-06	1.71E-04	0.00E+00	-1.13E-03
Depletion potential of the stratospheric ozone layer (ODP)	[kg CFC 11 eq.]	7.32E-08	3.24E-09	6.58E-11	0.00E+00	2.27E-10	1.61E-09	0.00E+00	-9.14E-09
Acidification potential, Accumulated Exceedance (AP)	[mol H+	5.83E-02	6.19E-03	3.02E-05	0.00E+00	7.09E-05	7.69E-04	0.00E+00	-5.78E-03
Eutrophication potential, fraction of nutrients reaching freshwater end compartment (EP-freshwater)	[kg P eq.]	5.24E-03	8.01E-06	7.49E-07	0.00E+00	1.25E-06	6.74E-05	0.00E+00	-1.37E-03
Eutrophication potential, fraction of nutrients reaching marine end compartment (EP-marine)	[kg N eq.]	1.09E-02	1.55E-03	1.20E-05	0.00E+00	2.66E-05	2.42E-04	0.00E+00	-1.25E-03
Eutrophication potential, Accumulated Exceedance (EP-terrestrial)	[mol N eq.]	1.17E-01	1.72E-02	1.15E-04	0.00E+00	2.90E-04	2.66E-03	0.00E+00	-1.40E-02
Formation potential of tropospheric ozone (POCP)	[kg NMVOC eq.]	3.30E-02	4.69E-03	4.02E-05	0.00E+00	1.00E-04	8.17E-04	0.00E+00	-3.83E-03
Abiotic depletion potential for non-fossil resources (ADP-minerals&metals)	[kg Sb eq.]	1.77E-03	2.56E-07	1.77E-08	0.00E+00	4.88E-08	7.31E-07	0.00E+00	-1.10E-03
Abiotic depletion potential for fossil resources (ADP-fossil)	MJ, net calorific value	7.69E+01	2.80E+00	6.63E-02	0.00E+00	2.22E-01	1.68E+00	0.00E+00	-6.87E+0
Water (user) deprivation potential, deprivation-weighted water consumption (WDP)	[m³ world eq. Deprived]	3.61E+00	7.08E-03	4.22E-04	0.00E+00	1.06E-03	5.19E-02	0.00E+00	-3.36E-01

3.2 Resource use and waste categories

The LCA results of GTBUILD - Titanium zinc plate metal per declared unit is listed as the table.

Table 4: Resource use and waste categories according to EN 15804.

RESULTS OF THE LCA - Resource use and waste categories per functional or declared unit									
Core indicator	Unit	A1-A3	A4	A5	C1	C2	С3	C4	D
Use of renewable primary energy excluding renewable primary energy resources used as	MJ	-9.32E-01	2.15E-02	2.12E-03	0.00E+00	2.91E-03	5.92E-02	0.00E+00	-8.84E-01

raw materials (PERE)									
Use of renewable primary energy resources used as raw materials (PERM)	МЈ	1.30E+01	0.00E+00						
Total use of renewable primary energy resources (PERT) (primary energy and primary energy resources used as raw materials)	МЈ	1.20E+01	2.15E-02	2.12E-03	0.00E+00	2.91E-03	5.92E-02	0.00E+00	-8.84E-01
Use of non-renewable primary energy excluding non- renewable primary energy resources used as raw materials (PENRE)	МЈ	7.68E+01	2.80E+00	6.63E-02	0.00E+00	2.22E-01	1.68E+00	0.00E+00	-6.87E+00
Use of non-renewable primary energy resources used as raw materials (PENRM)	МЈ	9.56E-02	0.00E+00						
Total use of non-renewable primary energy resources (PENRT) (primary energy and primary energy resources used as raw materials)	MJ	7.69E+01	2.80E+00	6.63E-02	0.00E+00	2.22E-01	1.68E+00	0.00E+00	-6.87E+00
Use of secondary material (SM)	kg	0.00E+00							
Use of renewable secondary fuels (RSF)	MJ	0.00E+00							
Use of non-renewable secondary fuels (NRSF)	МЈ	0.00E+00							
Net use of fresh water (FW)	m ³	1.09E-01	2.23E-04	1.31E-05	0.00E+00	3.14E-05	1.52E-03	0.00E+00	-1.07E-02
Hazardous waste disposed (HWD)	kg	4.58E-02	4.19E-05	1.52E-05	0.00E+00	5.88E-06	9.37E-01	0.00E+00	-3.17E-04
Non-hazardous waste disposed (NHWD)	kg	3.51E-01	2.01E-02	2.03E-03	0.00E+00	1.36E-02	4.83E-01	0.00E+00	-3.14E-02
Radioactive waste disposed (RWD)	kg	2.28E-04	3.36E-07	3.28E-08	0.00E+00	4.71E-08	7.32E-07	0.00E+00	-1.19E-05
Components for re-use (CRU)	kg	0.00E+00							
Materials for recycling(MR)	kg	5.23E-02	0.00E+00	8.20E-02	0.00E+00	0.00E+00	0.00E+00	1.00E+00	0.00E+00
Materials for energy recovery (MER)	kg	0.00E+00							
Exported energy (EE)	MJ, net calorific value	0.00E+00							
Exported thermal energy (ETE)	MJ, net calorific value	0.00E+00							

3.3 Information on biogenic carbon content

Table 5: Biogenic carbon content

Biogenic carbon content	Unit (expressed per functional unit or per declared unit)
Biogenic carbon content in product	0 kg C
Biogenic carbon content in accompanying packaging	0.034 kg C
NOTE: 1 kg biogenic carbon is equivalent to 44/12 kg of CO ₂ .	

4 Supplementary information

4.1 Calculation rules

In this section, it is suggested to include but not limited to following information:

- Declared or functional unit: 1 kilogram of product.
- Time representativeness: The data represents the period between 1st June 2023 and 31st May 2024.
- Cut-off rules: On the input side all flows entering the system and comprising more than 1% in total mass or contributing more than 1% to primary energy consumption are considered.
- Data quality: The evaluation of the quality of the modules used in the database is available in the appendix of the report.
- Allocation: The plant produces multiple products and the total quantities used on the sites have been allocated
 to the products by dividing the amount of the product in question with the total amount of all products
 produced at the site.
- In this report, the average value of each product group is used to represent the EPD declared results of the products in the product group. The product process, equipment and main materials in each product group are the same, and the differences between different models are mainly due to the differences in length, width and thickness. The declared unit of 1kg is used, and the difference is small, so the average value is adopted. That is, the data of the total raw material consumption, raw material transportation, energy consumption, waste, product transportation and other stages of different models and specifications of each product group are divided by the total output of the product group.

4.2 Scenarios and additional technical information

In this section, the A1-A3 is divide into 3 parts in the LCA model, including A1 raw material supply, A2 transport, and A3 manufacture. It is suggested to include but not limited to following information:

- Firstly, the raw material supply part covers the raw material and the packaging material.
- Secondly, the upstream transport of each material is modelled in the A2 part; the transport type, mass and distance are modelled according to the primary data and the loading rate and empty return rate is respectively set as 100% and 0%.
- Thirdly, the A3 manufacture process includes the resources input and the manufacture wastes in production. The production process consumes electricity and diesel according to the primary data. It is assumed that the distance of end-of-life product transportation (C2), product transportation from downstream customers to the construction site (A2), and the transportation of waste generated during installation and construction (A5) are 100km, 50km, and 50km respectively, and the transportation means are trucks (no specified model).

References

- ISO 14040: 2006, Environmental management Life cycle assessment Principles and framework
- ISO 14044: 2006, Environmental management Life cycle assessment Requirements and guidelines
- ISO 14025: Environmental labels and declarations Type III environmental declarations Principles and procedures (2006)
- EN 15804:2012+A2:2019 Sustainability of construction works-Environment product declarations-Core rules for the product category of construction products
- EPDCN-PCR-202204 PCR FOR CONSTRUCTION PRODUCTS AND CONSTRUCTION SERVICES TO EN 15804 V2.0
- EPD CHINA GENERAL PROGRAMME INSTRUCTIONS Version3
- SimaPro Tutorial, Version:6.0

Revision history

Any revision has been made after the EPD registration shall be clearly updated in this section.

Annex

An Annex may contain all additional information required for specific national use in different countries.

EPD 中国项目 值得信赖

The first EPD Programme Operator registered in China, contributing to the EPD system building in China www.epdchina.cn

ENVIRONMENTAL PRODUCT **DECLARATION**

ANNEX 1

ANNEX 1: Self declaration from EPD owner Specific requirements

1 Applied electricity data set used in the manufacturing phase

The electricity mix for the electricity used in manufacturing (A3) is the electricity grid mix $<0.2367374~kgCO_2~eqv/MJ>$

2 Transport from the place of manufacture to a central warehouse

Transport distance, and CO_2 -eqv./DU from transport of the product from factory gate to central warehouse in Oslo shall be given. The following table shall be included in the EPD:

Target product name	Тур е	Capacit y utilisati on (incl. return) %	Type of vehicle	Distan ce km	Fuel/Ener gy use	Unit	Value (I/t)	Kg CO2- eqv./DU
GTBUILD -	Boa t	42.2%	container ship	20200	0.0029		59.12	0.0035
Galvanized coated	Truc k	53.3%	Truck (EURO5) >32t	20	0.022	l/t·k m	0.45	0.0048
steel sheet metal		Χ	Truck (unspecified)	100	N/A		N/A	N/A
	Tota I	Х	X	20320	0.025		512.4 4	0.0004
CTDI III D	Boa t	42.2%	container ship	20310	0.0029	17:1	59.44	0.0000 36
GTBUILD - Aluminum	Truc k	53.3%	Truck (EURO5) >32t	20	0.022	l/t·k m	0.45	0.47
		Χ	Truck (unspecified)	100	N/A		N/A	N/A

The Norwegian EPD Foundation

	Tota I	X	X	20430	0.025		515.2 1	0.0004
	Boa t	42.2%	container ship	20308	0.0029		59.44	0.0035
GTBUILD - Titanium	Truc k	53.3%	Truck (EURO5) >32t	20	0.022	l/t·k m	0.45	0.0048
zinc plate		Χ	Truck (unspecified)	100	N/A		N/A	N/A
	Tota I	Х	X	20428	0.025		515.1 6	0.0004
	Boa t	42.2%	container ship	8909	0.0029		26.07	0.0035
GTINDUST	_	19.70%	Truck (EURO5)3.5~7.5t	2.4	0.111	171.1	0.27	0.0056
RY - Stainless steel	Truc k	53.3%	Truck (EURO5) >32t	120	0.022	l/t·k m	2.67	0.0048
		Χ	Truck (unspecified)	100	N/A		N/A	N/A
	Tota I	Х	X	9131.4	0.136		1241. 90	0.0001

3 Impact on the indoor environment

Indoor air emission testing has been performed; specify test method and reference; M1, _____

No test has being performed

Not relevant; specify The target products are not used indoors