

in accordance with ISO 14025 and EN 15804+A2

U11-37 - Budget Bench

nola

The Norwegian EPD Foundation

Owner of the declaration: Nola Industrier Aktiebolag

Product: U11-37 - Budget Bench

Declared unit: 1 pcs

This declaration is based on Product Category Rules: CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR 026:2022 Part B for Furniture **Program operator:** The Norwegian EPD Foundation

Declaration number:

NEPD-7687-7076-EN

Registration number:

NEPD-7687-7076-EN

Issue date: 03.10.2024

Valid to: 03.10.2029

EPD software: LCAno EPD generator ID: 580496

General information

Product U11-37 - Budget Bench

Program operator:

The Norwegian EPD Foundation Post Box 5250 Majorstuen, 0303 Oslo, Norway Phone: +47 977 22 020 web: www.epd-norge.no

Declaration number:

NEPD-7687-7076-EN

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR 026:2022 Part B for Furniture

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit:

1 pcs U11-37 - Budget Bench

Declared unit (cradle to gate) with option:

A1-A3,A4,A5,B2,B3,B4,C1,C2,C3,C4,D

Functional unit:

1 Budget Bench in painted pine and with armrests and frame in powder coated steel, as delivered to final customer.

General information on verification of EPD from EPD tools:

Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Verification of each EPD is made according to EPD-Norway's guidelines for verification and approval requiring that tools are i) integrated into the company's environmental management system, ii) the procedures for use of the EPD tool are approved by EPD-Norway, and iii) the process is reviewed annually by an independent third party verifier. See Appendix G of EPD-Norway's General Programme Instructions for further information on EPD tools

Verification of EPD tool:

Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPDNorway's procedures and guidelines for verification and approval of EPD tools.

Third party verifier:

Elisabet Amat, GREENIZE projects

(no signature required)

Owner of the declaration:

Nola Industrier Aktiebolag Contact person: Anders Åkesson Phone: 08-702 19 60 e-mail: anders.akesson@nola.se

Manufacturer: Nola Industrier Aktiebolag

Place of production:

Nola Industrier Aktiebolag Blekingegatan 26 118 56 Stockholm, Sweden

Management system:

Organisation no: 556207-4442

Issue date:

03.10.2024

Valid to: 03.10.2029

Year of study:

2023

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

Development and verification of EPD:

The declaration is created using EPD tool lca.tools ver EPD2022.03, developed by LCA.no. The EPD tool is integrated in the company's management system, and has been approved by EPD Norway.

Developer of EPD: Joachim Henriksson

Reviewer of company-specific input data and EPD: Anders Åkesson

Approved:

Håkon Hauan Managing Director of EPD-Norway

Product

Product description:

Although this efficient bench is named Budget, it showcases the high value of oiled oak and painted pine as a material. Oak and pine are popularly used as durable materials in both architecture and landscape design, making this bench an ideal complement to contemporary architecture. The slats are anchored to powder-coated steel legs to create a strong and stable base. Crafted in an understated design, this bench will still seem contemporary in years to come.

Product specification

U11-37 Budget Park bench Length: 198 cm Width: 39 cm Height: 70 cm Sitting height: 48 cm

Materials	kg	%	Recycled share in material (kg)	Recycled share in material (%)
Paint, solvent-based	0,12	0,50	0,00	0,00
Powder coating	0,17	0,71	0,00	0,00
Tømmer	10,06	41,83	0,00	0,00
Metal - Stainless steel	0,31	1,29	0,07	21,83
Metal - Steel	13,39	55,68	0,00	0,00
Total	24,05	100,00	0,07	

Packaging	kg	%	Recycled share in material (kg)	Recycled share in material (%)
Packaging - Pallet	12,50	98,50	0,00	0,00
Packaging - Plastic	0,19	1,50	0,00	0,00
Total incl. packaging	36,74	100,00	0,07	

Technical data:

Market:

Global.

Reference service life, product

15 years.

Reference service life, building

LCA: Calculation rules

Declared unit:

1 pcs U11-37 - Budget Bench

Cut-off criteria:

All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances. Energy flows and materials representing less than 1% of the total are excluded. Cut-off does not apply for REACH materials.

Allocation:

The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis. Allocation as per EN 15804.

Impacts from primary production of virgin material are assigned to respective component production and includes transportation.

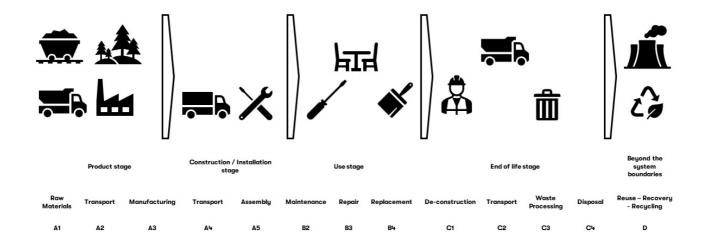
Impacts from repair and replacement are not included in the use stage, as the materials used in the product are designed to last longer than the stated lifespan

Impacts from primary production of recycled materials are assigned to respective component production, and includes recycling and transportation processes.

Emissions from disposal of the product are included and allocated per material. Energy recovery from incineration of relevant materials is included and allocated on a national level.

Data quality:

Specific data for the product composition are provided by the manufacturer. They represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on registered EPDs according to EN 15804, Ostfold Research databases, ecoinvent and other LCA databases. The data quality of the raw materials in A1 is presented in the table below. Data has been gathered from sub suppliers and public, current, published EPDs or ecoinvent 3.6 database.


Materials	Source	Data quality	Year
Metal - Stainless steel	ecoinvent 3.6	Database	2019
Metal - Steel	ecoinvent 3.6	Database	2019
Packaging - Pallet	ecoinvent 3.6	Database	2019
Packaging - Plastic	ecoinvent 3.6	Database	2019
Paint, solvent-based	ecoinvent 3.6	Database	2019
Powder coating	Ecoinvent 3.6	Database	2019
Tømmer	S-P-02657	EPD	2019

System boundaries (X=included, MND=module not declared, MNR=module not relevant)

	Р	roduct stag	je		uction on stage				End of life stage			Beyond the system boundaries					
Raw	materials	Transport	Manufacturing	Transport	Assembly	Use	Mainten an ce	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De- construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling-potential
A	\1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	Β7	C1	C2	C3	C4	D
>	X	Х	Х	Х	Х	MND	Х	Х	Х	MND	MND	MND	Х	Х	Х	Х	Х

System boundary:

Sweden

Additional technical information:

https://nola.se/produkter/budget-bank/

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Production scenario assumes production in Sweden at sub-suppliers with transport of materials and components between certain production steps.

Usage scenario assumes no repair or replacement and minimal maintenance during the 15 year lifespan of the product, as materials and surface treatments are selected to require servicing during lifetime of product. The installation location is assumed to be within Sweden.

Transport from production place to user (A4)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, 16-32 tonnes, EURO 5 (km)	36,7 %	400	0,044	l/tkm	17,60
Assembly (A5)	Unit	Value			
Waste, packaging, plastic film (LDPE), to average treatment - A5 (kg)	kg	0,19			
Waste, packaging, Pallet, EUR wooden pallet, single use, average treatment (kg)	kg	12,50			
Transport to waste processing (C2)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, 16-32 tonnes, EURO 5 (km)	36,7 %	50	0,044	l/tkm	2,20
Waste processing (C3)	Unit	Value			
Waste treatment per kg Non-hazardous waste, incineration with fly ash extraction - C3 (kg)	kg	0,17			
Waste, materials to recycling (kg)	kg	4,65			
Waste treatment per kg Scrap steel, incineration with fly ash extraction (kg)	kg	13,70			
Waste treatment per kg Wood, incineration with fly ash extraction (kg)	kg	10,06			
Disposal (C4)	Unit	Value			
Landfilling of ashes from incineration of Non- hazardous waste, process per kg ashes and residues - C4 (kg)	kg	0,04			
Landfilling of ashes and residues from incineration of Scrap steel (kg)	kg	9,05			
Landfilling of ashes from incineration of Wood, process per kg ashes and residues (kg)	kg	0,12			
Benefits and loads beyond the system boundaries (D)	Unit	Value			
Substitution of electricity (MJ)	MJ	7,10			
Substitution of thermal energy, district heating (MJ)	MJ	107,37			
Substitution of primary steel with net scrap (kg)	kg	4,63			

LCA: Results

The LCA results are presented below for the declared unit defined on page 2 of the EPD document.

Environm	ental impact							
	Indicator	Unit		A1-A3	A4	A5	B2	B3
F	GWP-total	kg CO ₂ -	eq	2,02E+01	2,45E+00	1,93E+01	0	0
P	GWP-fossil	kg CO ₂ -	eq	5,42E+01	2,45E+00	3,51E-01	0	0
P	GWP-biogenic	kg CO ₂ -	eq	-3,46E+01	9,99E-04	1,89E+01	0	0
P	GWP-luluc	kg CO ₂ -	eq	5,34E-01	8,56E-04	8,74E-05	0	0
Ò	ODP	kg CFC11	-eq	4,48E-06	5,58E-07	5,46E-08	0	0
Ê	АР	mol H+ -	eq	2,88E-01	1,00E-02	2,72E-03	0	0
÷	EP-FreshWater	kg P -ee	9	3,85E-03	1,92E-05	4,06E-06	0	0
÷	EP-Marine	kg N -e	q	5,68E-02	2,97E-03	1,18E-03	0	0
	EP-Terrestial	mol N -e	eq	6,36E-01	3,28E-02	1,25E-02	0	0
	РОСР	kg NMVOC	-eq	2,58E-01	1,01E-02	3,22E-03	0	0
	ADP-minerals&metals ¹	kg Sb-e	q	1,78E-03	6,64E-05	5,53E-06	0	0
F	ADP-fossil ¹	MJ	MJ		3,69E+01	4,01E+00	0	0
%	WDP ¹	m ³		3,04E+04	3,52E+01	6,30E+00	0	0
	Indicator	Unit	B4	C1	C2	C3	C4	D
P	GWP-total	kg CO ₂ -eq	0	0	3,06E-01	1,65E+01	1,02E-01	-5,74E+00
P	GWP-fossil	kg CO ₂ -eq	0	0	3,06E-01	5,86E-01	1,02E-01	-5,71E+00
P	GWP-biogenic	kg CO ₂ -eq	0	0	1,25E-04	1,59E+01	7,65E-05	-4,09E-03
P	GWP-luluc	kg CO ₂ -eq	0	0	1,07E-04	4,41E-05	3,08E-05	-2,37E-02
Ì	ODP	kg CFC11 -eq	0	0	6,98E-08	1,90E-08	3,16E-08	-4,54E-02
E	АР	mol H+ -eq	0	0	1,25E-03	2,10E-03	7,22E-04	-3,04E-02
	EP-FreshWater	kg P -eq	0	0	2,40E-06	4,47E-06	1,02E-06	-3,69E-04
	EP-Marine	kg N -eq	0	0	3,71E-04	9,53E-04	2,58E-04	-6,91E-03
- Cor	EP-Terrestial	mol N -eq	0	0	4,11E-03	1,02E-02	2,85E-03	-7,16E-02
	РОСР	kg NMVOC -eq	0	0	1,26E-03	2,61E-03	8,21E-04	-3,05E-02
æ	ADP-minerals&metals ¹	kg Sb-eq	0	0	8,29E-06	1,04E-06	1,77E-06	-9,40E-05
se de la companya de	ADP-IIIIIelais@iiielais							
ss)	ADP-fossil ¹	MJ	0	0	4,62E+00	1,71E+00	2,34E+00	-5,17E+01

GWP-total = Global Warming Potential total; GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment: EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

1. The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

Remarks to environmental impacts

Additional er	nvironmental impa	ct indicators						
	Indicator	Unit		A1-A3	A4	A5	B2	B3
	PM	Disease incidence	Disease incidence		1,76E-07	3,34E-08	0	0
	IRP ²	kgBq U235 -eq	kgBq U235 -eq		1,61E-01	1,46E-02	0	0
	ETP-fw ¹	CTUe		2,35E+03	2,72E+01	4,56E+00	0	0
44. * ****	HTP-c ¹	CTUh		3,84E-07	0,00E+00	5,02E-10	0	0
4 <u>8</u>	HTP-nc ¹	CTUh		1,76E-06	2,94E-08	2,41E-08	0	0
	SQP ¹	dimensionless	dimensionless		2,55E+01	2,32E+00	0	0
l.	ndicator	Unit	B4	C1	C2	C3	C4	D
	PM	Disease incidence	0	0	2,20E-08	4,04E-08	1,32E-08	-7,33E-07
	IRP ²	kgBq U235 -eq	0	0	2,02E-02	4,09E-03	9,36E-03	-3,86E-02
	ETP-fw ¹	CTUe	0	0	3,40E+00	8,25E+00	1,38E+00	-3,32E+02
40.* ****	HTP-c ¹	CTUh	0	0	0,00E+00	1,03E-09	4,90E-11	-2,54E-08
₹ <u>₹</u>	HTP-nc ¹	CTUh	0	0	3,67E-09	2,12E-08	1,31E-09	4,86E-07
	SQP ¹	dimensionless	0	0	3,18E+00	3,24E-01	5,10E+00	-6,27E+01

PM = Particulate Matter emissions; IRP = Ionizing radiation - human health; ETP-fw = Eco toxicity - freshwater; HTP-c = Human toxicity - cancer effects; HTP-nc = Human toxicity - non cancer effects; SQP = Soil Quality (dimensionless)

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

1. The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

2. This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

Resource use									
	Indicator		U	nit	A1-A3	A4	A5	B2	B3
i. D	PERE		MJ		3,23E+02	5,21E-01	8,28E-02	0	0
P	PERM		Ν	LN	3,40E+02	0,00E+00	-1,74E+02	0	0
×.	PERT		Ν	NJ	6,63E+02	5,21E-01	-1,73E+02	0	0
B	PENRE		Ν	٨J	8,66E+02	3,69E+01	4,02E+00	0	0
Å	PENRM		Ν	J	8,07E+00	0,00E+00	-8,07E+00	0	0
IA	PENRT		Ν	J	8,74E+02	3,69E+01	-4,05E+00	0	0
	SM		k	¢g	6,77E-02	0,00E+00	0,00E+00	0	0
	RSF		MJ		7,61E-01	1,87E-02	2,41E-03	0	0
Ū.	NRSF		MJ		1,75E+00	6,66E-02	2,71E-02	0	0
66	FW		n	n ³	9,19E-01	3,89E-03	2,91E-03	0	0
	dicator	U	Jnit	B4	C1	C2	C3	C4	D
ា ទ	dicator PERE		Jnit MJ	B4 0	C1 0	C2 6,52E-02	C3 7,18E-02	C4 4,34E-02	D -5,85E+01
		1							
iji Və	PERE	1	MJ	0	0	6,52E-02	7,18E-02	4,34E-02	-5,85E+01
in the second se	PERE PERM		M) I	0	0 0	6,52E-02 0,00E+00	7,18E-02 -1,67E+02	4,34E-02 0,00E+00	-5,85E+01 0,00E+00
er Er Er Fe	PERE PERM PERT		M) LIN	0 0 0	0 0 0	6,52E-02 0,00E+00 6,52E-02	7,18E-02 -1,67E+02 -1,67E+02	4,34E-02 0,00E+00 4,34E-02	-5,85E+01 0,00E+00 -5,85E+01
्र म स्व स्वि	PERE PERM PERT PENRE		rw rw rw	0 0 0 0	0 0 0 0	6,52E-02 0,00E+00 6,52E-02 4,62E+00	7,18E-02 -1,67E+02 -1,67E+02 1,72E+00	4,34E-02 0,00E+00 4,34E-02 2,34E+00	-5,85E+01 0,00E+00 -5,85E+01 -5,17E+01
	PERE PERM PERT PENRE PENRM		ил ги М1 М1 М1	0 0 0 0	0 0 0 0	6,52E-02 0,00E+00 6,52E-02 4,62E+00 0,00E+00	7,18E-02 -1,67E+02 -1,67E+02 1,72E+00 0,00E+00	4,34E-02 0,00E+00 4,34E-02 2,34E+00 0,00E+00	-5,85E+01 0,00E+00 -5,85E+01 -5,17E+01 0,00E+00
	PERE PERM PERT PENRE PENRM PENRT		ил гил ил гил ил ил	0 0 0 0 0 0	0 0 0 0 0	6,52E-02 0,00E+00 6,52E-02 4,62E+00 0,00E+00 4,62E+00	7,18E-02 -1,67E+02 -1,67E+02 1,72E+00 0,00E+00 1,72E+00	4,34E-02 0,00E+00 4,34E-02 2,34E+00 0,00E+00 2,34E+00	-5,85E+01 0,00E+00 -5,85E+01 -5,17E+01 0,00E+00 -5,17E+01
	PERE PERM PERT PENRE PENRM PENRT SM		MJ MJ MJ MJ MJ Kg	0 0 0 0 0 0 0	0 0 0 0 0 0 0	6,52E-02 0,00E+00 6,52E-02 4,62E+00 0,00E+00 4,62E+00 0,00E+00	7,18E-02 -1,67E+02 -1,67E+02 1,72E+00 0,00E+00 1,72E+00 0,00E+00	4,34E-02 0,00E+00 4,34E-02 2,34E+00 0,00E+00 2,34E+00 0,00E+00	-5,85E+01 0,00E+00 -5,85E+01 -5,17E+01 0,00E+00 -5,17E+01 0,00E+00

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non renewable primary energy excluding non-renewable primary energy resources used as raw materials; PERT = Total use of non renewable primary energy resources; SENRE = Use of non renewable primary energy resources; SENRE = Use of non renewable primary energy resources; SM = Use of secondary materials; RESF = Use of renewable primary energy resources; SM = Use of secondary materials; RESF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life - Waste									
	Indicator		Unit		A1-A3	A4	A5	B2	B3
A	HWD	kg		2,58E-01	1,88E-03	0,00E+00	0	0	
Ū	ਿ NHWD		kg		2,34E+01	1,77E+00	1,27E+01	0	0
æ	RWD		kg		5,93E-03	2,52E-04	0,00E+00	0	0
In	dicator		Unit	B4	C1	C2	C3	C4	D
à	HWD		kg	0	0	2,35E-04	0,00E+00	9,12E+00	-2,69E-02
Ū	NHWD		kg	0	0	2,21E-01	1,70E-01	8,76E-02	-2,29E+00
2	RWD		kg	0	0	3,15E-05	0,00E+00	1,44E-05	-3,26E-05

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life - Output flow												
Indi	Indicator			A1-A3	A4	A5	B2	B3				
Ô	CRU		kg		0,00E+00	0,00E+00	0	0				
\$	MFR		kg		0,00E+00	9,73E-02	0	0				
D₽Z	MER		kg		0,00E+00	1,24E+01	0	0				
$\overline{\mathcal{G}}$	EEE		MJ		0,00E+00	8,62E+00	0	0				
DI	EET		MJ		0,00E+00	1,30E+02	0	0				
Indicato	r	Unit	B4	C1	C2	C3	C4	D				
$\langle \hat{\varphi} \rangle$	CRU	kg	0	0	0,00E+00	0,00E+00	0,00E+00	0,00E+00				
(3)	MFR	kg	0	0	0,00E+00	4,65E+00	0,00E+00	0,00E+00				
DF	MER	kg	0	0	0,00E+00	2,39E+01	0,00E+00	0,00E+00				
50	EEE	MJ	0	0	0,00E+00	7,38E+00	0,00E+00	0,00E+00				
DI	EET	MJ	0	0	0,00E+00	1,12E+02	0,00E+00	0,00E+00				

CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported energy electrical; EET = Exported energy thermal

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

Biogenic Carbon Content

Biogenie europhieonene		
Indicator	Unit	At the factory gate
Biogenic carbon content in product	kg C	4,34E+00
Biogenic carbon content in accompanying packaging	kg C	5,17E+00

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2

Additional requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Source	Amount	Unit
Electricity, Sweden (kWh)	ecoinvent 3.6	54,94	g CO2-eq/kWh

Dangerous substances

The product contains no substances given by the REACH Candidate list.

Indoor environment

Additional Environmental Information

Key Environmental Indicators

Key environmental indicators	Unit	A1-A3	A4	A1-C4	A1-D
GWPtotal	kg CO ₂ -eq	20,16	2,45	58,82	53,08
Total energy consumption	MJ	1191,12	37,55	1241,76	1133,84
Amount of recycled materials	%	0,18			

Additional environmental impact indicators required in NPCR Part A for construction products							
Indicator	Unit		A1-A3	A4	A5	B2	B3
GWPIOBC	kg CO ₂ -eq		6,15E+01	2,45E+00	3,51E-01	0	0
Indicator	Unit	B4	C1	C2	C3	C4	D
GWPIOBC	kg CO ₂ -eq	0	0	3,06E-01	4,03E-01	1,03E-01	-8,26E+00

GWP-IOBC: Global warming potential calculated according to the principle of instantaneous oxidation. In order to increase the transparency of biogenic carbon contribution to climate impact, the indicator GWP-IOBC is required as it declares climate impacts calculated according to the principle of instantaneous oxidation. GWP-IOBC is also referred to as GWP-GHG in context to Swedish public procurement legislation.

Bibliography

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures. ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines.

EN 15804:2012 + A2:2019 Environmental product declaration - Core rules for the product category of construction products.

ISO 21930:2017 Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products.

ecoinvent v3, Allocation, cut-off by classification, Swiss Centre of Life Cycle Inventories.

Iversen et al., (2021) eEPD v2021.09 Background information for EPD generator tool system verification, LCA.no Report number: 07.21 Ruud et al., (2023) EPD generator for NPCR026 Part B for Furniture - Background information for EPD generator application and LCA data, LCA.no report number 01.23

NPCR Part A: Construction products and services. Ver. 2.0. March 2021, EPD-Norge. NPCR 026 Part B for Furniture. Ver. 2.0 March 2022, EPD-Norge.

and notae	Program operator and publisher	Phone: +47 977 22 020
🕲 epd-norge	The Norwegian EPD Foundation	e-mail: post@epd-norge.no
Global program operatør	Post Box 5250 Majorstuen, 0303 Oslo, Norway	web: www.epd-norge.no
0	Owner of the declaration:	Phone: 08-702 19 60
nola	Nola Industrier Aktiebolag	e-mail: anders.akesson@nola.se
	Blekingegatan 26, 118 56 Stockholm	web: https://nola.se/
\bigcirc	Author of the Life Cycle Assessment	Phone: +47 916 50 916
(LCA)	LCA.no AS	e-mail: post@lca.no
	Dokka 6A, 1671 Kråkerøy	web: www.lca.no
\bigcirc	Developer of EPD generator	Phone: +47 916 50 916
	LCA.no AS	e-mail: post@lca.no
.no	Dokka 6A, 1671 Kråkerøy	web: www.lca.no
SCO PLATFORM	ECO Platform	web: www.eco-platform.org
	ECO Portal	web: ECO Portal