

Environmental Product Declaration

In accordance with ISO14025:2006 and EN15804:2012+A2:2019

Photovoltaic modules

Owner of the declaration:

Trina Solar Co. Ltd

Product name:

Mono-crystalline Photovoltaic module

Declared unit:

 $1 m^2$ of manufactured photovoltaic module

Product category /PCR:

[NPCR PART A: Construction products and services Version 2.0 & NPCR NPCR 029 Part B Version: 1.2]

Program holder and publisher:

The Norwegian EPD foundation

Declaration number: NEPD-7032-6426-EN

 $Registration\ number:$

NEPD-7032-6426-EN

Issue date: 02.07.2024

Valid to: 02.07.2029

The Norwegian EPD Foundation

General information

Product:

NEG18R.20 (power rating: 475-505Wp) NEG18R.28 (power rating: 475-505Wp)

Program operator:

The Norwegian EPD Foundation Post Box 5250 Majorstuen, 0303 Oslo, Norway

Tlf: +47 23 08 80 00 e-mail: post@epd-norge.no

Declaration number:

NEPD-7032-6426-EN

This declaration is based on Product Category Rules:

NPCR PART A: Construction products and services Version 2.0, 2021-03-24

NPCR 029 Part B for photovoltaic modules used in the building and construction industry, including production of cell, wafer, ingot block, solar grade silicon, solar substrates, solar superstrates and other solar grade semiconductor materials version 1.2, 2022-03-31

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer, life cycle assessment data and evidences.

Declared unit:

1m² of manufactured photovoltaic module

Declared unit with option:

Not applicable

Functional unit:

1 Wp of manufactured photovoltaic module, from cradle-to-grave, with activities needed for a study period for a defined reference service life (\geq 80% of the labelled power output).

Verification:

internal

Independent verification of the declaration and data, according to ISO14025:2010

Independent verifier approved by EPD Norway

external

✓

Owner of the declaration:

Trina Solar Co. Ltd. Contact person: Na shan

Phone: +86 18179871396 e-mail: na.shan@trinasolar.com

Manufacturer:

Trina Solar Co. Ltd. Contact person: Na shan

Phone: +86 18179871396 e-mail: na.shan@trinasolar.com

Place of production:

No. 2, TianHe Road, Trina PV Industrial Park, Changzhou City, 213031 Jiangsu, P.R. China

Management system:

ISO14001: ISO45001: ISO9001:

Organisation no:

91320411608131455L

Issue date:

02.07.2024

Valid to:

02.07.2029

Year of study:

2024

Comparability:

EPD of construction products may not be able to compare if they do not comply with EN 15804 and are seen in a building context.

The EPD has been worked out by:

Freddey Land

Approved

Manager of EPD Norway

Product

Product description:

The PV modules are dual glass monocrystalline silicon module. The module efficiency can reach as high as 22.7% thanks to the high density interconnect technology. Modules contain multibusbar technology for better light trapping, lower series resistance, improved current collection and enhanced reliability. NEG18R.28 and NEG18R.20 modules share the identical BOM and manufacturing process and production line. The volume of the two modules are combined. The production volume of the NEG18R.20 is estimated to account for 5-10% of the two production volume of 2122556 pcs. Thus, it is reasonable to present a grouped EPD for these two modules.

Product Specification:

The details of materials mass are presented below

Materials	Unit	Value	%
Front glass	kg	8.82E+00	38.4%
Back glass	kg	8.82E+00	38.4%
EVA film	kg	9.54E-01	4.2%
POE	kg	9.46E-01	4.1%
silica gel	kg	2.93E-01	1.3%
welding flux	kg	2.85E-02	0.1%
Photovoltaic cell	kg	6.70E-01	2.9%
Frame	kg	2.17E+00	9.4%
Ribbon interconnection	kg	1.76E-01	0.8%
Ribbon String	kg	4.25E-02	0.2%
Junction box	kg	1.15E-01	0.5%
TOTAL	kg	2.30E+01	100%

Technical data:

Series (brand name)	Technol ogy	Minim um Power (W)	Maxim um power (W)	Appli ed powe r (W)	Dimensi ons (mm²)	Weig ht (kg) excludi ng packag ing (kg)	Weight includi ng packag ing (kg)	Modul e efficie ncy	Cell numb er	First year degradat ion	Annual average degradat ion
NEG18R .28	Mono- crystalli ne	475	505	490	1961*11 34	23.034	24.147	22.7%	108	1%	0.4%
NEG18R .20	Mono- crystalli ne	475	505	490	1961*11 34	23.034	24.147	22.7%	108	1%	0.4%

The degradation rate is based on the product specification from Trina Solar. No third-party certificate is available currently.

Market:

Europe

Reference service life, product:

The reference service life is 25 years (>80% of the labelled power output) according to the PCR since no third-party report is available.

Additional technical info

Table 1 The conversion factor for the impact result from unit W to m²

PV modules	Cell dimension (area without frames) (m²)	Applied nominal Watt (Wp)	Value (W/m²)
NEG18R.28	2.04	505	247.3
NEG18R.20	2.04	505	247.3

LCA: Calculation rules

Functional unit:

1 Wp of manufactured photovoltaic module, from cradle-to-grave, with activities needed for a study period for a defined reference service life (\geq 80% of the labelled power output).

Cut-off criteria:

No specific materials have been cut-off in this specific LCA. All materials provided by the manufacturer are properly modelled.

Allocation:

Since the three modules are produced from the same production line. Therefore, a multi-output allocation strategy is applied for the A3 phase to the specific PV modules.

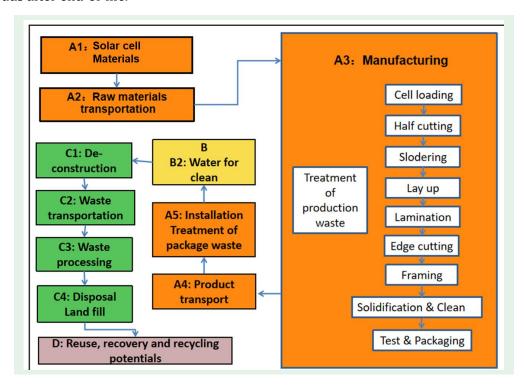
The allocation strategy for the EoL process per PCR follows the same strategy listed in the EN15804. Thus, the "cut-off" strategy is applied. This scenario allocates the entire environmental impacts of waste treatment procedures (from deconstruction to the waste processing) to the producer. The recycled materials, on the other hand, are burden-free. An important note is that when materials have reached a so-called "end-of-waste" state, the coverage of the waste processing is thus terminated. Any inputs/flows related to refine gross recycled materials for actual applications are beyond the product system boundary and is accounted in Module D

Data quality:

According to NPCR Part A Construction Products and Services v2.0 and NPCR 029 Part B v1.2, the data quality is assessed through the ISO 14044 standard and EN 15804.

Quality requirement	Specific requirement	Data quality	Level
Time-related coverage (age of	Existing LCI data were, at most,	<10 years	Good
data and the minimum length of	10 years old.	<10 years	Good
time over which data should be	Newly collected LCI data were	Trina 2023-03-01 to 2024-	Good
collected)	current or up to 3 years old	02-29	
Geographical coverage (the	Upstream: Unit process for raw	All raw material data were	Good
geographical area from which	material should be collected for	based on the respective	
data for unit processes should be	respective geogrpahic region	geographic region	
collected to satisfy the goal of the	Core: unit process for production	Production data is collected	Good

study):	should represent the real site	and provided by Trina	
	Downstream: end-of-life disposal should represent the region of disposal	Parameter from IEC standards and generic data from the database was used for scenario development	Good
Completeness	95% percentage of flow is measured or estimated	All of the unit processes within the scope of the life cycle were included, with less than a 5% cut-off	Good
Representativeness	Qualitative assessment of the degree to which the data set reflects the true population of interest, i.e. geographical coverage, period and technology coverage	See geographical coverage, period, and technology coverage requirement above. These requirements are met.	Good
Consistency	Qualitative assessment of Whether the study methodology is applied uniformly to the various components of the analysis	the study methodology is applied uniformly to the different parts of the analysis	Good
Reproducibility	Qualitative assessment of the extent to which information about the methodology and data values would allow an independent practitioner to reproduce the results reported in the study	Yes	Good
Sources of the data	The foreground data should be from the primary producer	Yes	Good
Uncertainty of the information	Data, models, and assumptions should be verified	All the primary data and assumptions were confirmed with Trina, and models were built following ISO 14040/44 and PCR requirements	Good



System boundaries (X=included, MND=module not declared, MNR=module not relevant)

Pro	Product stage		Installation stage			Use stage					End of life stage			Benefits & loads beyond system boundary		
Raw materials	Transport	Manufacturing	Transport	Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery-Recycling- potential
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
X	X	X	X	X	MNR	X	MNR	MNR	MNR	MNR	MNR	X	X	X	X	X

System boundary:

The study is a cradle to grave analysis from the extraction of raw materials up to the decommission of the product, including raw materials acquisition, transportation, manufacturing, delivery, installation, maintenance and waste disposal for end-of-life, benefits and loads after end-of-life.

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Transport from production place to Installation site/user (A4)

Transport from production place to Installation site/user (A4)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy consumption	Unit	Value
Truck, EURO5, 16- 32 metric ton	36.7%	1029	Diesel	kg fuel/kg.km	0.037
Container ship	50%	19400	Heavy oil	kg fuel/kg.km	0.0025
Truck, EURO5, > 32 metric ton	53.2%	800	Diesel	kg fuel/kg.km	0.019

The distribution scenario (A4) is based on the information provided by the suppliers. The product is firstly transported to the Shanghai Port at a distance of 230km by lorry. Then, the product is transported from Shanghai Port to Rotterdam Port by 19400km through the container ship. After than, the product is unloaded to the storage site by a distance of 300km. Finally, the distance between the storage site to the final consumers is assumed to be 500km for European domestic construction site according to the NPCR 029 Part B version 1.2.

Installation (A5)

	Unit	Value
Water consumption	m^3	0
Electricity consumption	kWh	0.0309
Diesel	MJ	6.59
Material loss	Kg	0
Output materials for waste treatment	Kg	0.307

The packaging materials of the PV modules are mostly wooden pallet and paper, and are assumed to be recycled. The transport distance for the packaging materials to the recycling site is assumed to be 100km. The scaling method is clearly listed in the following table. Other materials including the mounting system, cables, inverts are not considered based on the requirements listed in the NPCR 029 Part B version 1.2

Construction	consumption process (per kWp capacity)	
Electricity	36.033 kWh electricity for 570kWp as in the Ecoinvent dataset ("Photovoltaic plant, 570kWp, multi-Si, on open ground {GLO} photovoltaic plant construction, 570kWp, multi-Si, on open ground Cut-off, U")	0.06 kWh/kWp is applied
Diesel	7673MJ diesel for 570kWp as in the Ecoinvent dataset("Photovoltaic plant, 570kWp, multi-Si, on open ground {GLO} photovoltaic plant construction, 570kWp, multi-Si, on open ground Cut-off, U")	13.4MJ/kWp is applied

Use (B1)

There are no material or energy inputs, nor emissions during the use phase (B1) of the PV module.

Maintenance (B2)/Repair (B3)

	Unit	Value
Water consumption	m^3	0.48
Electricity consumption	kWh	0

Only maintenance (B2) for PV panels is cleaning. It is assumed to be cleaned once per month with an application rate of 0.76L water per m² PV panel according to the reference[13].

Replacement (B4)/Refurbishment (B5)

It is assumed that the PV module itself does not require replacement and refurbishment during its RSL.

Operational energy (B6) and water consumption (B7)

According the NPCR 029 Part B v1.2, PV module does not require operational energy nor water.

End of Life (C1, C3, C4)

	Unit	Value
Hazardous waste disposed	kg	0
Collected as mixed construction waste	kg	0
Reuse	kg	0
Recycling	kg	17.744
Energy recovery	kg	0
To landfill	kg	2.980
To incineration	kg	2.309

De-construction (C1) of the PV plant during the disposal stage is assumed mainly consuming electricity, and the electricity consumption is assumed the same as the construction stage (A5), 50km transportation distance from plant site to waste treatment site (C2) is assumed to be 50km according to the NPCR 029 Part B version 1.2. For the C3 phase, Since there is lack of existing data of recycling rate for PV module, this study refers to legal requirements issued by Waste Electrical and Electronic Equipment (WEEE). In 2012/19/EU-Article 11 & ANNEX V, the required collection rate for waste PV module is 85%. Therefore, 15% of waste PV module end up with waste disposal through landfill. A specific electricity 0.0556kWh/kg and 0.0324MJ/kg diesel consumption is referenced to dissemble and sort the collected PV modules. The final disposal scenario for C4 is based on the following table

PV components	Materials	Recycling	Landfill	Incineration
PV cells	Silicon	80%	20%	0%
PV cells	Silver bar line	90%	10%	0%
Solar glass	Glass	85%	15%	0%
PET	PET	0%	0%	100%
Aluminium Frame	Aluminium alloy	94%	6%	0%
Interconnection and busbar	Copper	63%	37%	0%
	Pb	93%	7%	0%
string	Tin	90%	10%	0%
Junction box	Bronze	63%	37%	0%
Junction box	Plastics	0%	0%	100%
Chemicals	Adhesive	0%	0%	100%
EVA	EVA	0%	0%	100%

Transport to waste processing (C2)

Transport from production place to Installation site/user (C2)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy consumption	Unit	Value	
Truck	36.7%	50	Diesel	kg fuel/kg.km	0.037	

Waste transportation distance from the de-installation plant to the waste treatment facilities is assumed to be 50 km according to the NPCR 029 Part B v1.2

Benefits and loads beyond the system boundaries (D)

Benefits and loads beyond the system boundaries (D)	Unit	Value
Avoided Products		
Silicon, metallurgical grade {CN} market for silicon, metallurgical grade Cut-off, U	kg	0.524
Silver {GLO} market for silver Cut-off, U	kg	0.014
Glass cullet, for Saint-Gobain ISOVER SA {GLO} glass cullet, for Saint-Gobain ISOVER SA, Recycled Content cut-off Cut-off, U	kg	14.996
Aluminium, primary, ingot {CN} aluminium production, primary, ingot Cut-off, U	kg	2.037
Copper, anode {RoW} smelting of copper concentrate, sulfide ore Cut-off, U	kg	0.094
Lead concentrate {GLO} market for lead concentrate Cut-off, U	kg	0.025
Tin concentrate {GLO} market for tin concentrate Cut-off, U	kg	0.038
Bronze {GLO} market for bronze Cut-off, U	kg	0.017
Electricity, low voltage {ENTSO-E} market group for electricity, low voltage Cutoff, U	MJ	9.8
Heat, central or small-scale, other than natural gas {Europe without Switzerland} market for heat, central or small-scale, other than natural gas Cut-off, U	MJ	19.1

LCA: Results

The environmental impacts are based on the average values of the three PV modules. The environmental impact deviations among these modules are less than 10%. The environmental impacts are presented per functional unit (1Wp) and declared unit $(1m^2)$

Core environmental impact indicators (per functional unit – 1Wp)

	(F =						,			
Indicator	Unit	A1-A3	A4	A5	B2	C1	C2	С3	C4	D
GWP - total	kg CO2 eq	3.65E-01	1.70E-03	1.59E-02	1.22E-03	1.36E-03	4.43E-04	9.06E-04	1.30E-02	-3.63E-02
GWP - fossil	kg CO2 eq	3.63E-01	1.53E-03	1.59E-02	1.21E-03	1.36E-03	4.43E-04	8.74E-04	1.30E-02	-3.49E-02
GWP - biogenic	kg CO2 eq	1.73E-03	1.67E-04	4.86E-03	1.99E-06	1.17E-06	4.00E-07	3.03E-05	3.31E-06	-7.52E-04
GWP - luluc	kg CO2 eq	4.95E-04	2.08E-07	1.05E-05	1.60E-06	2.07E-07	2.15E-07	2.01E-06	1.34E-07	-5.98E-04
ODP	kg CFC11 eq	3.45E-07	2.19E-11	2.68E-10	2.36E-10	2.16E-11	9.63E-12	1.58E-11	1.10E-11	-9.82E-10
AP	molc H+ eq	2.29E-03	1.25E-05	3.10E-04	6.42E-06	1.25E-05	1.44E-06	4.75E-06	4.04E-06	-3.45E-04
EP- freshwater	kg P eq	1.60E-04	6.20E-08	7.84E-07	4.39E-07	6.15E-08	3.10E-08	7.25E-07	3.72E-07	-2.50E-05
EP-freshwater	kg PO4 eq	4.90E-04	1.90E-07	2.40E-06	1.34E-06	1.88E-07	9.49E-08	2.22E-06	1.14E-06	-7.65E-05
EP -marine	kg N eq	4.21E-04	5.88E-06	7.95E-05	1.31E-06	5.75E-06	4.96E-07	1.19E-06	3.43E-05	-3.65E-05
EP - terrestrial	molc N eq	4.54E-03	6.28E-05	8.76E-04	1.34E-05	6.25E-05	5.24E-06	1.15E-05	2.02E-05	-3.72E-04
POCP	kg NMVOC eq	1.33E-03	1.86E-05	2.47E-04	4.30E-06	1.85E-05	2.16E-06	3.56E-06	5.52E-06	-1.48E-04
ADP-M&M ²	kg Sb-Eq	1.82E-05	5.22E-10	2.71E-08	5.52E-09	5.10E-10	1.42E-09	1.58E-09	6.65E-10	-3.00E-06

ADP-fossil ²	MJ	4.40E+00	1.80E-02	2.08E-01	1.46E-02	1.80E-02	6.27E-03	1.88E-02	4.73E-03	-5.13E-01
WDP ²	m³	2 655 01	4.20E.0E	C 02E 04	4.005.03	4 20E 0E	2505.05	1 04E 04	1 74E 04	E 0/E 02

GWP-total: Global Warming Potential; GWP-fossil: Global Warming Potential fossil fuels; GWP-biogenic: Global Warming Potential biogenic; GWP-LULUC: Global Warming Potential use and land use change; ODP: Depletion potential of the stratospheric ozone layer; AP: Acidification potential, Accumulated Exceedance; EP-freshwater: Eutrophication potential, fraction of nutrients reaching freshwater end compartment; See "additional Norwegian requirements" for indicator given as PO4 eq. EP-marine: Eutrophication potential, fraction of nutrients reaching freshwater end compartment; EP-terrestrial: Eutrophication potential, Accumulated Exceedance; POCP: Formation potential of tropospheric ozone; ADP-M&M: Abiotic depletion potential for non-fossil resources (minerals and metals); ADP-fossil: Abiotic depletion potential for fossil resources; WDP: Water deprivation potential, deprivation weighted water consumption

Reading example: 9.0 E-03 = 9.0*10-3 = 0.009

Additional environmental impact indicators (per functional unit – 1Wp)

Indicator	Unit	A1-A3	A4	A5	B2	C1	C2	С3	C4	D
PM	Disease incidenc e	2.49E-08	3.46E-10	8.64E-10	8.16E-11	3.45E-10	3.52E-11	4.61E-11	3.31E-11	-2.43E-09
IRP1	kBq U235 eq.	2.82E-02	2.25E-05	1.58E-04	1.06E-04	2.22E-05	8.39E-06	4.90E-04	8.38E-06	-8.20E-03
ETP-fw ²	CTUe	3.84E+00	9.00E-03	1.04E-01	5.32E-03	8.42E-03	3.10E-03	3.02E-03	1.02E-01	-2.72E-01
HTP-c ²	CTUh	1.91E-10	4.33E-13	6.91E-12	2.87E-12	4.16E-13	2.01E-13	2.78E-13	1.01E-12	-1.22E-10
HTP-nc ²	CTUh	6.99E-09	3.67E-12	9.84E-11	4.05E-11	3.03E-12	4.42E-12	6.76E-12	1.66E-10	-2.91E-09
SQP ²	Dimensi onless	1.09E+00	1.30E-03	8.71E-02	3.02E-03	1.26E-03	3.74E-03	2.86E-03	7.51E-03	-1.64E-01

PM: Particulate matter emissions; IRP: lonising radiation, human health; ETP-fw: Ecotoxicity (freshwater); ETP-c: Human toxicity, cancer effects; HTP-nc: Human toxicity, non-cancer effects; SQP: Land use related impacts / soil quality

Resource use (per functional unit – 1Wp)

nesource use (per functional unit 111p)										
Parameter	Unit	A1-A3	A4	A5	B2	C1	C2	С3	C4	D
RPEE	MJ	7.00E-01	2.05E-04	2.09E-03	1.39E-03	2.01E-04	9.73E-05	3.57E-03	1.29E-04	-2.20E-01
RPEM	MJ	6.53E-03	0.00E+00							
TPE	MJ	7.06E-01	2.05E-04	2.09E-03	1.39E-03	2.01E-04	9.73E-05	3.57E-03	1.29E-04	-2.20E-01
NRPE	MJ	4.29E+00	1.80E-02	2.08E-01	1.46E-02	1.80E-02	6.27E-03	1.88E-02	4.73E-03	-5.13E-01
NRPM	MJ	1.16E-01	0.00E+00							
TRPE	MJ	4.40E+00	1.80E-02	2.08E-01	1.46E-02	1.80E-02	6.27E-03	1.88E-02	4.73E-03	-5.13E-01
SM	kg	0.00E+00								
RSF	MJ	0.00E+00								
NRSF	MJ	0.00E+00								
FW	m^3	9.85E-03	2.00E-06	2.30E-05	9.34E-04	1.78E-06	8.94E-07	1.44E-05	9.62E-06	-1.46E-03

RPEE Renewable primary energy resources used as energy carrier; **RPEM** Renewable primary energy resources used as raw materials; **TPE** Total use of renewable primary energy resources; **NRPE** Nonrenewable primary energy resources used as energy carrier; **NRPM** Nonrenewable primary energy resources used as materials; **TRPE** Total use of non-renewable primary energy resources; **SM** Use of secondary materials; **RSF** Use of renewable secondary fuels; **W** Use of not fresh water.

End of life – Waste (per functional unit – 1Wp)

Liid of liic		iste (per	Tunctio	iidi diiit	1 W P J					
Parameter	Unit	A1-A3	A4	A5	B2	C1	C2	C3	C4	D
HW	kg	2.93E-04	2.46E-06	3.93E-06	8.05E-07	1.69E-07	1.55E-07	5.86E-07	2.39E-04	-1.25E-05
NHW	kg	4.79E-02	8.86E-05	6.97E-03	1.68E-04	2.64E-05	3.06E-04	4.97E-05	1.24E-02	-8.75E-03
RW	kg	6.93E-06	5.56E-09	3.72E-08	2.57E-08	5.50E-09	2.04E-09	1.26E-07	2.03E-09	-2.15E-06

HW Hazardous waste disposed; NHW Non-hazardous waste disposed; RW Radioactive waste disposed.

EPD for the best environmental decision 10

¹ This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

² The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

End of life – output flow (per functional unit – 1Wp)

			C1			1 /				
Parameter	Unit	A1-A3	A4	A5	B2	C1	C2	C3	C4	D
CR	kg	0.00E+00								
MR	kg	0.00E+00	4.55E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.08E-02	0.00E+00	0.00E+00
MER	kg	0.00E+00								
EEE	MJ	0.00E+00	1.48E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.57E-02	0.00E+00
ETE	MJ	0.00E+00	2.93E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.07E-02	0.00E+00

 $\it CR$ Components for reuse; $\it MR$ Materials for recycling; $\it MER$ Materials for energy recovery; $\it EEE$ Exported electric energy; $\it ETE$ Exported thermal energy.

Core environmental impact indicators (per declared unit – 1m²)

0010 011111	ommonicai	TITIP COOL		oro (Por	0.0010.1	01 011110				
Indicator	Unit	A1-A3	A4	A5	B2	C1	C2	С3	C4	D
GWP - total	kg CO2 eq	8.06E+01	3.75E-01	3.51E+00	2.69E-01	3.00E-01	9.78E-02	2.00E-01	2.87E+00	-8.01E+00
GWP - fossil	kg CO2 eq	8.01E+01	3.38E-01	3.51E+00	2.67E-01	3.00E-01	9.78E-02	1.93E-01	2.87E+00	-7.70E+00
GWP - biogenic	kg CO2 eq	3.82E-01	3.69E-02	1.07E+00	4.39E-04	2.58E-04	8.83E-05	6.69E-03	7.31E-04	-1.66E-01
GWP - luluc	kg CO2 eq	1.09E-01	4.59E-05	2.32E-03	3.53E-04	4.57E-05	4.75E-05	4.44E-04	2.96E-05	-1.32E-01
ODP	kg CFC11 eq	7.61E-05	4.83E-09	5.92E-08	5.21E-08	4.77E-09	2.13E-09	3.49E-09	2.43E-09	-2.17E-07
AP	molc H+ eq	5.05E-01	2.76E-03	6.84E-02	1.42E-03	2.76E-03	3.18E-04	1.05E-03	8.92E-04	-7.61E-02
EP- freshwater	kg P eq	3.53E-02	1.37E-05	1.73E-04	9.69E-05	1.36E-05	6.84E-06	1.60E-04	8.21E-05	-5.52E-03
EP-freshwater	kg PO ₄ eq	1.08E-01	4.19E-05	5.29E-04	2.97E-04	4.16E-05	2.09E-05	4.90E-04	2.51E-04	-1.69E-02
EP -marine	kg N eq	9.29E-02	1.30E-03	1.75E-02	2.89E-04	1.27E-03	1.09E-04	2.63E-04	7.57E-03	-8.06E-03
EP - terrestrial	molc N eq	1.00E+00	1.39E-02	1.93E-01	2.96E-03	1.38E-02	1.16E-03	2.54E-03	4.46E-03	-8.21E-02
POCP	kg NMVOC eq	2.94E-01	4.11E-03	5.45E-02	9.49E-04	4.08E-03	4.77E-04	7.86E-04	1.22E-03	-3.27E-02
ADP-M&M ²	kg Sb-Eq	4.02E-03	1.15E-07	5.98E-06	1.22E-06	1.13E-07	3.13E-07	3.49E-07	1.47E-07	-6.62E-04
ADP-fossil ²	MJ	9.71E+02	3.97E+00	4.59E+01	3.22E+00	3.97E+00	1.38E+00	4.15E+00	1.04E+00	-1.13E+02
WDP ²	m³	5.85E+01	9.69E-03	1.51E-01	8.83E+00	9.45E-03	5.65E-03	4.06E-02	3.84E-02	-1.29E+00

GWP-total: Global Warming Potential; GWP-fossil: Global Warming Potential fossil fuels; GWP-biogenic: Global Warming Potential biogenic; GWP-LULUC: Global Warming Potential and use and land use change; ODP: Depletion potential of the stratospheric ozone layer; AP: Acidification potential, Accumulated Exceedance; EP-freshwater: Eutrophication potential, fraction of nutrients reaching freshwater end compartment; See "additional Norwegian requirements" for indicator given as PO4 eq. EP-marine: Eutrophication potential, fraction of nutrients reaching freshwater end compartment; EP-terrestrial: Eutrophication potential, Accumulated Exceedance; POCP: Formation potential of tropospheric ozone; ADP-M&M: Abiotic depletion potential for non-fossil resources (minerals and metals); ADP-fossil: Abiotic depletion potential for fossil resources; WDP: Water deprivation potential, deprivation weighted water consumption

Reading example: 9.0 E-03 = 9.0*10-3 = 0.009

Additional environmental impact indicators (per declared unit – 1m²)

			1 (1							
Indicator	Unit	A1-A3	A4	A5	B2	C1	C2	С3	C4	D
PM	Disease incidence	5.50E-06	7.64E-08	1.91E-07	1.80E-08	7.61E-08	7.77E-09	1.02E-08	7.31E-09	-5.36E-07
IRP ¹	kBq U235 eq.	6.22E+00	4.97E-03	3.49E-02	2.34E-02	4.90E-03	1.85E-03	1.08E-01	1.85E-03	-1.81E+00
ETP-fw ²	CTUe	8.48E+02	1.99E+00	2.30E+01	1.17E+00	1.86E+00	6.84E-01	6.67E-01	2.25E+01	-6.00E+01
HTP-c ²	CTUh	4.22E-08	9.56E-11	1.53E-09	6.33E-10	9.18E-11	4.44E-11	6.14E-11	2.23E-10	-2.69E-08
HTP-nc ²	CTUh	1.54E-06	8.10E-10	2.17E-08	8.94E-09	6.69E-10	9.76E-10	1.49E-09	3.66E-08	-6.42E-07
SQP ²	Dimension less	2.41E+02	2.87E-01	1.92E+01	6.67E-01	2.78E-01	8.25E-01	6.31E-01	1.66E+00	-3.62E+01

PM: Particulate matter emissions; IRP: Ionising radiation, human health; ETP-fw: Ecotoxicity (freshwater); ETP-c: Human toxicity, cancer effects; HTP-nc: Human toxicity, non-cancer effects; SQP: Land use related impacts / soil quality

11

¹ This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

² The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

Resource use (per declared unit – 1m²)

Parameter	Unit	A1-A3	A4	A5	B2	C1	C2	С3	C4	D
RPEE	MJ	1.54E+02	4.52E-02	4.61E-01	3.07E-01	4.44E-02	2.15E-02	7.88E-01	2.85E-02	-4.86E+01
RPEM	MJ	1.44E+00	0.00E+00							
TPE	MJ	1.56E+02	4.52E-02	4.61E-01	3.07E-01	4.44E-02	2.15E-02	7.88E-01	2.85E-02	-4.86E+01
NRPE	MJ	9.46E+02	3.97E+00	4.59E+01	3.22E+00	3.97E+00	1.38E+00	4.15E+00	1.04E+00	-1.13E+02
NRPM	MJ	2.56E+01	0.00E+00							
TRPE	MJ	9.71E+02	3.97E+00	4.59E+01	3.22E+00	3.97E+00	1.38E+00	4.15E+00	1.04E+00	-1.13E+02
SM	kg	0.00E+00								
RSF	MJ	0.00E+00								
NRSF	MJ	0.00E+00								
FW	m^3	2.17E+00	4.41E-04	5.08E-03	2.06E-01	3.93E-04	1.97E-04	3.18E-03	2.12E-03	-3.22E-01

RPEE Renewable primary energy resources used as energy carrier; RPEM Renewable primary energy resources used as raw materials; TPE Total use of renewable primary energy resources; NRPE Nonrenewable primary energy resources used as energy carrier; NRPM Nonrenewable primary energy resources used as materials; TRPE Total use of non-renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non-renewable secondary fuels; W Use of net fresh water.

End of life – Waste (per declared unit – 1m²)

Parameter	Unit	A1-A3	A4	A5	B2	C1	C2	С3	C4	D
HW	kg	6.47E-02	5.43E-04	8.67E-04	1.78E-04	3.73E-05	3.42E-05	1.29E-04	5.28E-02	-2.76E-03
NHW	kg	1.06E+01	1.96E-02	1.54E+00	3.71E-02	5.83E-03	6.75E-02	1.10E-02	2.74E+00	-1.93E+00
RW	kg	1.53E-03	1.23E-06	8.21E-06	5.67E-06	1.21E-06	4.50E-07	2.78E-05	4.48E-07	-4.75E-04

HW Hazardous waste disposed; NHW Non-hazardous waste disposed; RW Radioactive waste disposed.

End of life – output flow (per declared unit – 1m²)

Parameter	Unit	A1-A3	A4	A5	В2	C1	C2	С3	C4	D
CR	kg	0.00E+00								
MR	kg	0.00E+00	1.00E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	6.80E+00	0.00E+00	0.00E+00
MER	kg	0.00E+00								
EEE	MJ	0.00E+00	3.27E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.47E+00	0.00E+00
ETE	MJ	0.00E+00	6.47E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	6.78E+00	0.00E+00

Information describing the biogenic carbon content at the factory gate

Biogenic carbon content	Unit	Value
Biogenic carbon content in product	kg C	0
Biogenic carbon content in the accompanying packaging	kg C	4.86E-01

Additional requirements

Location based electricity mix from the use of electricity in manufacturing

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3). The average grid loss for the Jiangsu province is 3.07% according to the Chinese Energy Year book 2023.

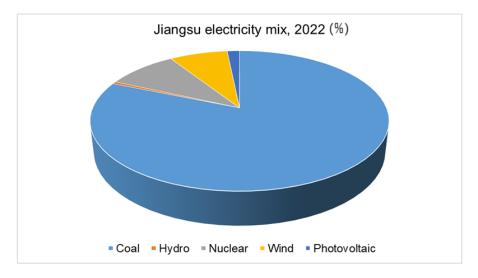


Figure 2 the electricity production mix for Jiangsu province at 2022

National electricity grid, medium voltage, in Jiangsu Province	Data source	core [kWh]	GWP _{total} [kg CO2 - eq/kWh]	SUM [kg CO2 -eq]
Electricity production at low voltage	Chinese Energy Year book 2023	0.0355	0.921	0.0326

Guarantees of origin from the use of electricity in the manufacturing phase

None

Additional environmental impact indicators required for construction products

In order to increase the transparency of biogenic carbon contribution to climate impact, the indicator GWP-IOBC is required as it declares climate impacts calculated according to the principle of instantaneous oxidation. GWP-IOBC is also referred to as GWP-GHG in context to Swedish public procurement legislation

Parameter	Unit	A1-A3	A4	A5	B2	C1	C2	C3	C4	D
GWP-IOBC	kg	3.75E-01	1.70E-03	1.59E-02	1.24E-03	1.36E-03	4.45E-04	9.56E-04	1.31E-02	-3.79E-02

GWP-IOBC Global warming potential calculated according to the principle of instantaneous oxidation.

Since the grouped PV product have a range of output power in 475W to 505W. Thus, a correction factors are reported if the actual product is deviated from the baseline 490W applied. The correction factor is defined as the following formular.

Output power	475W	480W	485W	490W	495W	500W	505W
Correction factor	103.16%	102.08%	101.03%	100.00%	98.99%	98.00%	97.03%

Hazardous substances

The PV modules does not contain any Substances of Very High Concern (SVHC) and other REACH listed substances according to the REACH Authorisation List https://echa.europa.eu/authorisation-list

-Indoor environment

Not relevant for PV modules since it is installed in outdoor environment.

Carbon footprint

None

Bibliography

- [1] Ecoinvent, 2023. Swiss Centre for Life Cycle Assessment, v3.9 (www.ecoinvent.ch).
- [2] EN 15804:2012+A2:2019/AC:2021, Sustainability of construction works Environmental product declaration Core rules for the product category of construction products.
- [3] ISO 14025:2006, Environmental labels and declarations-Type III environmental declarations-Principles and procedures.
- [4] ISO 14040: 2006/Amd 1:2020 Environmental management Life cycle assessment Principles and framework Amendment 1 (ISO 2020).
- [5] ISO 14044: 2006/Amd 2:2020 Environmental management Life cycle assessment Requirements and guidelines Amendment 2 (ISO 2020).
- [6] ISO 21930:2017, Sustainability in buildings and civil engineering works Core rules for environmental product declarations of construction products and services.
- [7] Latunussa C E L, Ardente F, Blengini G A, et al. Life Cycle Assessment of an innovative recycling process for crystalline silicon photovoltaic panels[J]. Solar energy materials and solar cells, 2016, 156: 101-111.
- [8] EPD-norge. (2023). General Programme Instructions for The Norwegian EPD Foundation/EPD-Norge (www.epd-norge.no) version 3:2019 updated 250523
- [9] EPD-norge (2021) Part A: Construction products and services ver. 2
- [10] EPD-norge. (2022). NPCR Part B for photovoltaic modules used in the building and construction industry, including production of cell, wafer, ingot block, solar grade silicon, solar substrates, solar superstrates and other solar grade semiconductor materials, version 1.2.
- [11] R. Frischknecht, P. Stolz, L. Krebs, M. de Wild-Scholten, P. Sinha, V. Fthenakis, H. C. Kim, M. Raugei, M. Stucki, 2020, Life Cycle Inventories and Life Cycle Assessment of Photovoltaic Systems, International Energy Agency (IEA) PVPS Task 12, Report T12-19:2020.
- [12] Cynthia E.L. Latunussa, Fulvio Ardente, Gian Andrea Blengini, Lucia Mancini, Life Cycle Assessment of an innovative recycling process for crystalline silicon photovoltaic panels, Solar Energy Materials and Solar Cells, Volume 156, 2016, Pages 101-111, ISSN 0927-0248, https://doi.org/10.1016/j.solmat.2016.03.020.
- [13] Qing Yang, Tianyue Huang, Fuying Chen, Javier Uche, Yuxuan Wang, Peng Yuan, Yinya Zhang, Jianlan Li, Water saving potential for large-scale photovoltaic power generation in China: Based on life cycle assessment, Renewable and Sustainable Energy Reviews, Volume 167,2022, 112681
- [14] WEEE Directive 2012/19/EU Article 4,11&15
- [15] Rolf Frischknecht, Philippe Stolz, Luana Krebs, Mariska de Wild-Scholten, Parikhit Sinha, Life Cycle Inventories and Life Cycle Assessment of Photovoltaic Systems, International Energy Agency (IEA) PVPS Task 12: PV Sustainability, Report IEA-PVPS T12-19:2020 December 2020

-				
	Program Operator	tlf	+47 23 08 80 00	
	The Norwegian EPD			
© epd-norway	Foundation			
	Post Box 5250	e-post:	post@epd-norge.no	
Global Program Operator	Majorstuen, 0303 Oslo	e-post.	post@epa-norge.no	
	Norway	web	www.epd-norge.no	
	Publisher	tlf	+47 23 08 80 00	
	The Norwegian EPD			
© epd-norway	Foundation			
_	Post Box 5250	e-post:	post@epd-norge.no	
Global Program Operator	Majorstuen, 0303 Oslo	e-post.	post@epa-norge.no	
	Norway	web	www.epd-norge.no	
	Owner of the	tlf	+86 17805105571	
_	declaration	CII	100 17 003 103 37 1	
Trina solar	Trina Solar Co. Ltd			
IFIIId SUIdI	No. 2, TianHe Road,			
— A (III	Trina PV Industrial Park,	e-post:	Na.shan@trinasolar.com	
天合光能	Changzhou City, 213031	c post.	iva.snane timasolar.com	
	Jiangsu, P.R. China			
	China	web	https://www.trinasolar.com/	
Trina solar	Author of the life cycle assesment			
If III d SUId!	Na.shan	tlf	+86 18179871396	
天合光能		e-post:	Na.shan@trinasolar.com	
大台九能				
ECO PLATFORM				
	ECO Platform	web	www.eco-platform.org	
	ECO Portal	web	ECO Portal	
VERIFIED				
L				