

Environmental product declaration

in accordance with ISO 14025 and EN 15804+A2

Topvex TC (HWH-S)

The Norwegian EPD Foundation

Owner of the declaration:

Systemair Sverige AB

Product:

Topvex TC (HWH-S)

Declared unit:

1 pcs

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core PCR

NPCR 030:2021 Part B for ventilation components

Program operator:

The Norwegian EPD Foundation

Declaration number:

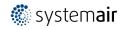
NEPD-7009-6413-EN

Registration number:

NEPD-7009-6413-EN

Issue date:

28.06.2024


Valid to:

28.06.2029

ver-201124

EPD software:

LCAno EPD generator ID: 436311

General information

Product

Topvex TC (HWH-S)

Program operator:

The Norwegian EPD Foundation
Post Box 5250 Majorstuen, 0303 Oslo, Norway

Phone: +47 977 22 020 web: www.epd-norge.no

Declaration number:

NEPD-7009-6413-EN

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR 030:2021 Part B for ventilation components

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit:

1 pcs Topvex TC (HWH-S)

Declared unit with option:

A1-A3,A4,C1,C2,C3,C4,D

Functional unit:

Not declared.

General information on verification of EPD from EPD tools:

Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Verification of each EPD is made according to EPD-Norway's guidelines for verification and approval requiring that tools are i) integrated into the company's environmental management system, ii) the procedures for use of the EPD tool are approved by EPD-Norway, and iii) the process is reviewed annually by an independent third party verifier. See Appendix G of EPD-Norway's General Programme Instructions for further information on EPD tools

Verification of EPD tool:

Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPDNorway's procedures and guidelines for verification and approval of EPD tools.

Third party verifier:

Alexander Borg, Asplan Viak AS

(no signature required)

Owner of the declaration:

Systemair Sverige AB Contact person: Marie W. Andersson Phone: +46 222 440 00 e-mail: mailbox@systemair.se

Manufacturer:

Systemair Sverige AB

Place of production:

Systemair Sverige AB Industrivägen 3 739 30 Skinnskatteberg, Sweden

Management system:

ISO 9001, ISO 14001

Organisation no:

559000-1516

Issue date:

28.06.2024

Valid to:

28.06.2029

Year of study:

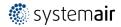
2022

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

Development and verification of EPD:

The declaration is created using EPD tool lca.tools ver EPD2022.03, developed by LCA.no. The EPD tool is integrated in the company's management system and has been approved by EPD Norway.


Developer of EPD: Karolina Persson

Reviewer of company-specific input data and EPD: Jimmy Frisk

Approved:

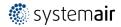
9

Håkon Hauan, CEO EPD-Norge

Product

Product description:

Topvex TC air handling unit with counterflow heat exchanger, integrated controls, dampers and hydronic heater. For use in ordinary comfort ventilation.


Product specification

Topvex TC air handling unit range from size 20 to 70 with capacities from approximately 400m³/h to 7000 m³/h.

The EPD data is provided for size 20 (reference).

Materials	kg	%
Adhesive	0,05	0,02
Chemical	0,34	0,12
Electronic - Unspecified	2,92	1,01
Electronic - Wire	1,47	0,51
Filter, mineral based	2,49	0,86
Glass fibre reinforced plastic, polyamide	0,47	0,16
Hydronic coil (50% AL, 50%CU)	4,76	1,65
Insulation, Mineral based	19,95	6,93
Metal - Galvanized Steel	7,14	2,48
Metal - Steel with magnelis coating	183,42	63,68
Motor	11,50	3,99
Plastic - Acrylonitrile butadiene styrene (ABS)	7,01	2,43
Plastic - Polyamide	0,52	0,18
Plastic - Polyethylene	0,30	0,10
Plastic - Polyethylene (HDPE)	0,11	0,04
Plastic - Polyoxymethylene (POM)	0,02	0,01
Plastic - Polypropylene (PP)	0,57	0,20
Plastic - Polystyrene (PS)	1,60	0,56
Plastic - Polyurethane (PUR)	1,50	0,52
Plastic - Polyvinyl chloride (PVC)	0,39	0,13
Rubber, synthetic	2,58	0,90
Metal - Aluminium	34,76	12,07
Metal - Stainless steel	0,32	0,11
Metal - Steel	1,87	0,65
Metal - Steel with aluzinc coating	0,44	0,15
Metal - Zinc	0,93	0,32
Other	0,47	0,16
Plastics	0,15	0,05
Total	288,03	100,00
Packaging	kg	%
Packaging - Cardboard	0,31	1,17
Packaging - Paper	0,18	0,69
Packaging - Plastic	0,39	1,48
Packaging - Wood	25,50	96,66
Total incl. packaging	314,41	100,00

Technical data:

Casing performance in accordance with EN 1886:2007:

- Air leakage class L2
- Thermal bridging class TB2
- Thermal transmittance class T2
- Mechanical strength class D2

ZM310 coated steel panels with 50 mm insulation. Corrosion resistance class C5 in accordance with ISO 12944-2:2017.

Energy performance must be calculated using realistic project specific operating conditions. Complete and project specific product specification including all relevant technical data and energy performance can be generated using our Topvex calculation software, Systemair Configurator. Please refer to the Systemair website for more information.

Topvex is Eurovent certified.

The composition of materials is the same for all sizes, and the ratio of materials is almost equal among the sizes. Key EPD data for the full range is provided in the following table, including suggested conversion factors.

Size specific EPDs are also available upon request.

Size	Weight [kg]	GWP tot. (A1-A3) [kg CO2 eq]	Factor [-]
20	314	2081	1.00
25	332	2256	1.08
30	455	3201	1.54
35	455	3201	1.54
50	603	4392	2.11
60	606	4401	2.11
70	708	5073	2.47

Market:

Europe

Reference service life, product

Not declared, dependent on the application of the product.

Reference service life, building or construction works

Not declared.

LCA: Calculation rules

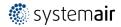
Declared unit:

1 pcs Topvex TC (HWH-S)

Cut-off criteria:

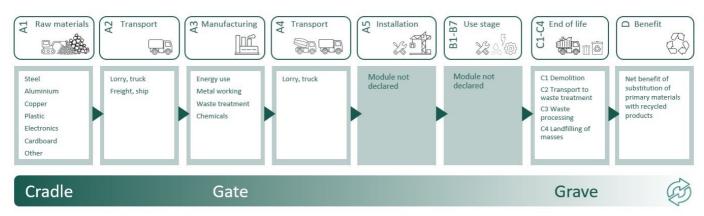
All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

Allocation:

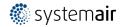

The allocation is made in accordance with the provisions of EN 15804. Energy, water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

Data quality:

Specific data for the product composition are provided by the manufacturer. The data represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on EPDs according to EN 15804 and different LCA databases. The data quality of the raw materials in A1 is presented in the table below.


Materials	Source	Data quality	Year
Adhesive	ecoinvent 3.6	Database	2019
Chemical	ecoinvent 3.6	Database	2019
Electronic - Unspecified	ecoinvent 3.6	Database	2019
Electronic - Wire	ecoinvent 3.6	Database	2019
Electronic - Wire	Product composition + ecoinvent 3.6	Supplier data + database	2019
Filter, mineral based	ecoinvent 3.6	Database	2019
Glass fibre reinforced plastic, polyamide	Modified ecoinvent 3.6	Database	2019
Hydronic coil (50% AL, 50%CU)	ecoinvent 3.6	Database	2019
Insulation, Mineral based	ecoinvent 3.6	Database	2019
Metal - Aluminium	Modified ecoinvent 3.6	Database	2019
Metal - Galvanized Steel	Modified ecoinvent 3.6	Database	2019
Metal - Stainless steel	Modified ecoinvent 3.6	Database	2019
Metal - Steel	ecoinvent 3.6	Database	2019
Metal - Steel with aluzinc coating	Modified ecoinvent 3.6	Database	2019
Metal - Steel with magnelis coating	Modified ecoinvent 3.6	Database	2019
Metal - Zinc	Modified ecoinvent 3.6	Database	2019
Motor	ecoinvent 3.6	Database	2019
Other	Material composition + ecoinvent 3.6	Supplier data + database	2019
Packaging - Cardboard	ecoinvent 3.6	Database	2019
Packaging - Paper	ecoinvent 3.6	Database	2019
Packaging - Plastic	ecoinvent 3.6	Database	2019
Packaging - Wood	ecoinvent 3.6	Database	2019
Plastic - Acrylonitrile butadiene styrene (ABS)	ecoinvent 3.6	Database	2019
Plastic - Polyamide	ecoinvent 3.6	Database	2019
Plastic - Polyethylene	ecoinvent 3.6	Database	2019
Plastic - Polyethylene (HDPE)	ecoinvent 3.6	Database	2019
Plastic - Polyoxymethylene (POM)	ecoinvent 3.6	Database	2019
Plastic - Polypropylene (PP)	ecoinvent 3.6	Database	2019
Plastic - Polystyrene (PS)	ecoinvent 3.6	Database	2019
Plastic - Polyurethane (PUR)	ecoinvent 3.6	Database	2019
Plastic - Polyvinyl chloride (PVC)	ecoinvent 3.6	Database	2019
Plastics	ecoinvent 3.6	Database	2019
Rubber, synthetic	ecoinvent 3.6	Database	2019

System boundaries (X=included, MND=module not declared, MNR=module not relevant)


Р	roduct stag	ge		uction on stage	Use stage End of life stage			End of li			End of life stage			Beyond the system boundaries		
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refu <i>r</i> b ishment	Operational energy use	Operational water use	De- construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling-potential
A1	A2	A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
Х	Χ	Χ	Χ	MND	MND	MND	MND	MND	MND	MND	MND	Χ	Χ	Χ	Χ	X

System boundary:

Additional technical information:

Complete project specific technical documentation is generated using our online product selection software, Systemair Configurator. Please refer to the Systemair website for more information.

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

For A4 a generic transportation distance (EURO6 truck) of 300 km is declared. True transportation distance can be provided in project specific EPD. For C2 a generic transportation distance (EURO6 truck) of 50 km is declared. True transportation distance can be provided in project specific EPD

j ,					•
Transport from production place to user (A4)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, over 32 tonnes, EURO 6 (km)	53,3 %	300	0,023	l/tkm	6,90
De-construction demolition (C1)	Unit	Value			
Demolition of building per kg of ventilation product (kg)	kg/DU	288,03			
Transport to waste processing (C2)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, over 32 tonnes, EURO 6 (km)	53,3 %	50	0,023	l/tkm	1,15
Waste processing (C3)	Unit	Value			
Waste treatment per kg plastic, industrial electronics, incineration (kg)	kg	3,46			
Waste treatment per kg Plastics, from incineration (kg)	kg	0,61			
Waste treatment per kg Hazardous waste, incineration (kg)	kg	0,39			
Materials to recycling (kg)	kg	222,87			
Waste treatment per kg wire plastic, municipal incineration (kg)	kg	0,35			
Waste treatment per kg Electronics scrap, Control units, incineration (kg)	kg	2,92			
Waste treatment per kg Expanded Polystyrene (EPS), incineration (kg)	kg	0,80			
Waste treatment per kg bulk waste, excluding reinforcement, sorting plant (kg)	kg	11,50			
Waste treatment per kg Polyethylene (PE), incineration (kg)	kg	0,20			
Waste treatment per kg Polyoxymethylene (POM), incineration (kg)	kg	0,01			
Waste, plastic, mixture, to landfill (kg)	kg	0,01			
Waste treatment per kg Polypropylene (PP), incineration (kg)	kg	0,28			
Waste treatment per kg Polyurethane (PU), incineration with fly ash extraction (kg)	kg	0,75			
Waste treatment per kg Polyvinylchloride (PVC), incineration (kg)	kg	0,19			
Waste treatment per kg Rubber, incineration (kg)	kg	2,58			

Disposal (C4)	Unit	Value		
Waste, plastic, mixture, to landfill (kg)	kg	5,86		
Landfilling of ashes from incineration per kg plastic, industrial electronics, process per kg ashes and residues (kg)	kg	0,23		
Landfilling of ashes from incineration of Plastics, process per kg ashes and residues (kg)	kg	0,01		
Landfilling of ashes from incineration per kg Hazardous waste, process per kg ashes and residues (kg)	kg	0,07		
Waste, aluminium, to landfill (kg)	kg	2,67		
Landfilling of ashes from incineration per kg wire plastic, process per kg ashes and residues (kg)	kg	0,05		
Waste, copper, to landfill (kg)	kg	0,55		
Landfilling of ashes from incineration of Electronics scrap, Control units, process of ashes and residues (kg)	kg	2,05		
Waste, expanded polystyrene, EPS, to landfill (kg)	kg	0,80		
Landfilling of ashes from incineration of Expanded polystyrene (EPS), process per kg ashes and residues (kg)	kg	0,03		
Waste, mineral wool, to landfil (kg)	kg	22,44		
Waste, steel, to landfill (kg)	kg	20,15		
Landfilling of ashes from incineration of Polyethylene (PE), process per kg ashes and residues (kg)	kg	0,01		
Landfilling of ashes from incineration of Polyoxymethylene (POM), process per kg ashes and residues (kg)	kg	0,00		
Landfilling of ashes from incineration of Polypropylene (PP), process per kg ashes and residues (kg)	kg	0,01		
Landfilling of ashes from incineration of Polyurethane (PU), process per kg ashes and residues (kg)	kg	0,03		
Landfilling of ashes from incineration of Polyvinylchloride (PVC), process per kg ashes and residues (kg)	kg	0,03		
Landfilling of ashes from incineration of Rubber, process per kg ashes and residues (kg)	kg	0,14		
Waste, scrap zinc, to landfill (kg)	kg	0,09		
Waste, stainless steel, to landfill (kg)	kg	0,03		

Benefits and loads beyond the system boundaries (D)	Unit	Value		
Substitution of electricity (MJ)	MJ	13,03		
Substitution of thermal energy, district heating (MJ)	MJ	197,10		
Substitution of primary aluminium with net scrap (kg)	kg	5,24		
Substitution of primary copper with net scrap (kg)	kg	3,43		
Substitution of primary steel with net scrap (kg)	kg	115,23		
Substitution of primary zinc with net scrap (kg)	kg	0,84		
Substitution of primary other ferrous metals with net scrap (kg)	kg	0,18		

LCA: Results

The LCA results are presented below for the declared unit defined on page 2 of the EPD document.

Environ	Environmental impact												
	Indicator	Unit	A1-A3	A4	C1	C2	C3	C4	D				
	GWP-total	kg CO ₂ -eq	2,08E+03	8,21E+00	3,80E-01	1,37E+00	3,11E+01	1,37E+00	-1,87E+02				
	GWP-fossil	kg CO ₂ -eq	2,07E+03	8,20E+00	3,80E-01	1,37E+00	3,11E+01	1,37E+00	-1,85E+02				
	GWP-biogenic	kg CO ₂ -eq	6,21E+00	3,51E-03	7,12E-05	5,86E-04	4,36E-03	7,74E-04	-3,49E-01				
	GWP-luluc	kg CO ₂ -eq	5,40E+00	2,50E-03	2,99E-05	4,17E-04	4,93E-04	1,88E-04	-9,98E-01				
٨	ODP	kg CFC11 -eq	1,54E-04	1,98E-06	8,21E-08	3,30E-07	1,96E-07	1,41E-07	-8,33E-02				
CET .	АР	mol H+ -eq	1,61E+01	2,64E-02	3,97E-03	4,40E-03	9,10E-03	3,50E-03	-2,36E+00				
-	EP-FreshWater	kg P -eq	1,83E-01	6,53E-05	1,38E-06	1,09E-05	3,24E-05	7,46E-06	-1,93E-02				
-	EP-Marine	kg N -eq	1,91E+00	5,78E-03	1,75E-03	9,64E-04	3,96E-03	1,91E-03	-2,35E-01				
*	EP-Terrestial	mol N -eq	4,03E+01	6,45E-02	1,92E-02	1,08E-02	4,03E-02	1,31E-02	-2,74E+00				
	POCP	kg NMVOC -eq	7,30E+00	2,53E-02	5,29E-03	4,22E-03	9,85E-03	3,92E-03	-1,05E+00				
	ADP-minerals&metals ¹	kg Sb-eq	8,80E-01	1,46E-04	5,83E-07	2,44E-05	8,95E-06	4,86E-06	-7,44E-02				
	ADP-fossil ¹	MJ	2,72E+04	1,33E+02	5,23E+00	2,22E+01	9,76E+00	1,03E+01	-1,79E+03				
%	WDP ¹	m^3	2,03E+05	1,02E+02	1,11E+00	1,70E+01	6,12E+01	5,37E+01	-1,99E+04				

GWP-total = Global Warming Potential total; GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment: EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption

Remarks to environmental impacts

This air handling unit uses electric energy for fan drive and recovers thermal energy via the counterflow heat exchanger. These factors are highly project specific and vary depending on:


- Climate / outdoor conditions
- Air volume
- External pressure drop
- Supply temperature
- Extract temperature
- Operating hours
- Electricity origin
- Etc.

Energy use and heat recovery are key factors in determining the environmental impact of this product and must be calculated with project specific values. This can be done using our Topvex calculation software, Systemair Configurator. Please refer to the Systemair website for more information.

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009"

^{*}INA Indicator Not Assessed

^{1.} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

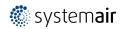
Additional	Additional environmental impact indicators										
li li	ndicator	Unit	A1-A3	A4	C1	C2	C3	C4	D		
	PM	Disease incidence	3,62E-03	7,54E-07	1,05E-07	1,26E-07	5,32E-08	6,28E-08	-1,72E-05		
(in)	IRP ²	kgBq U235 -eq	1,22E+02	5,82E-01	2,24E-02	9,71E-02	3,65E-02	4,70E-02	-2,59E+00		
40	ETP-fw ¹	CTUe	7,35E+04	9,74E+01	2,86E+00	1,62E+01	1,08E+02	1,67E+03	-2,07E+04		
40.	HTP-c ¹	CTUh	8,13E-06	0,00E+00	0,00E+00	0,00E+00	2,50E-09	1,30E-08	-9,24E-07		
4° £	HTP-nc ¹	CTUh	1,12E-04	9,42E-08	2,59E-09	1,57E-08	1,47E-07	8,77E-07	-3,92E-06		
	SQP ¹	dimensionless	1,06E+04	1,53E+02	6,63E-01	2,55E+01	3,00E+00	2,76E+01	-3,72E+02		


PM = Particulate Matter emissions; IRP = Ionizing radiation – human health; ETP-fw = Eco toxicity – freshwater; HTP-c = Human toxicity – cancer effects; HTP-nc = Human toxicity – non cancer effects; SQP = Potential Soil Quality Index (dimensionless)

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009"

^{*}INA Indicator Not Assessed

^{1.} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator


^{2.} This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

Resource use	Resource use												
	ndicator	Unit	A1-A3	A4	C1	C2	C3	C4	D				
) F	PERE	MJ	2,47E+03	1,68E+00	2,83E-02	2,79E-01	1,10E+00	3,92E-01	-4,36E+02				
	PERM	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00				
A.	PERT	MJ	2,47E+03	1,68E+00	2,83E-02	2,79E-01	1,10E+00	3,92E-01	-4,36E+02				
	PENRE	MJ	2,66E+04	1,33E+02	5,23E+00	2,22E+01	9,76E+00	1,03E+01	-1,79E+03				
. An	PENRM	MJ	6,10E+02	0,00E+00	0,00E+00	0,00E+00	-5,85E+02	0,00E+00	0,00E+00				
IA	PENRT	MJ	2,73E+04	1,33E+02	5,23E+00	2,22E+01	-5,75E+02	1,03E+01	-1,79E+03				
<u> </u>	SM	kg	1,22E+02	0,00E+00	2,57E-03	0,00E+00	1,27E-04	5,99E-05	2,40E+00				
2	RSF	MJ	6,51E+01	5,86E-02	6,96E-04	9,77E-03	2,43E-02	8,57E-03	4,57E+00				
	NRSF	MJ	1,10E+02	1,97E-01	1,02E-02	3,28E-02	-1,68E-03	3,01E-02	1,28E+02				
®	FW	m ³	2,93E+01	1,52E-02	2,69E-04	2,53E-03	6,14E-02	1,60E-02	-1,84E+00				

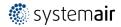
PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non renewable primary energy resources used as raw materials; PENRM = Use of non renewable primary energy resources; SM = Use of secondary materials; PENRM = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of I	End of life - Waste											
Indicator			Unit	A1-A3	A4	C1	C2	C3	C4	D		
	Ā	HWD	kg	1,40E+01	7,29E-03	1,54E-04	1,22E-03	9,70E-03	4,25E-01	-5,92E-01		
	Ū	NHWD	kg	5,61E+02	1,16E+01	6, 19E-03	1,93E+00	1,78E+00	5,45E+01	-7,01E+01		
	⊗	RWD	kg	9,58E-02	9,10E-04	3,63E-05	1,52E-04	7,05E-06	3,86E-05	-2,43E-03		

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed


End of life - Output flow											
Indicat	or	Unit	A1-A3	A4	C1	C2	C3	C4	D		
@▷	CRU	kg	0,00E+00								
\$₽	MFR	kg	7,32E+01	0,00E+00	2,52E-03	0,00E+00	2,23E+02	1,41E-03	-9,39E-02		
DØ	MER	kg	9,43E+00	0,00E+00	7,82E-06	0,00E+00	9,03E+00	2,14E-05	-1,24E-02		
5₽	EEE	MJ	5,26E+00	0,00E+00	2,68E-05	0,00E+00	1,47E+01	8,98E-04	-3,03E-02		
DB	EET	MJ	7,95E+01	0,00E+00	4,05E-04	0,00E+00	2,22E+02	1,36E-02	-4,58E-01		

CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported energy electrical; EET = Exported energy thermal

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

Biogenic Carbon Content					
Unit	At the factory gate				
kg C	0,00E+00				
kg C	0,00E+00				
	kg C				

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2

Additional requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Source	Amount	Unit
Electricity, Vattenfall Nordic Hydropower (kWh) - SE - S-P-00088	S-P-00088	7,26	g CO2-eq/kWh

Dangerous substances

The product contains no substances on the REACH Candidate list at or above 100 ppm, 0,01 % by weight.


Indoor environment

The air handling unit is an essential component for obtaining good thermal and atmospheric conditions. An optimally sized and well-functioning AHU will have direct positive effects on human health, wellbeing, and productivity and is a crucial prerequisite for achieving an healthy indoor environment.

Additional Environmental Information

Additional environmental impact indicators required in NPCR Part A for construction products								
Indicator	Unit	A1-A3	A4	C1	C2	C3	C4	D
GWPIOBC	kg CO ₂ -eq	2,08E+03	8,21E+00	3,80E-01	1,37E+00	3,11E+01	1,37E+00	-2,43E+02

GWP-IOBC: Global warming potential calculated according to the principle of instantaneous oxidation. In order to increase the transparency of biogenic carbon contribution to climate impact, the indicator GWP-IOBC is required as it declares climate impacts calculated according to the principle of instantaneous oxidation. GWP-IOBC is also referred to as GWP-GHG in context to Swedish public procurement legislation.

Bibliography

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures.

ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines.

EN 15804:2012 + A2:2019 Environmental product declaration - Core rules for the product category of construction products.

ISO 21930:2017 Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products.

ecoinvent v3, Allocation, cut-off by classification, Swiss Centre of Life Cycle Inventories.

Iversen et al., (2021) eEPD v2021.09 Background information for EPD generator tool system verification, LCA.no Report number: 07.21 Graafland and Iversen (2022) EPD generator for NPCR 030 Ventilation components, Background information for EPD generator application and LCA data, LCA.no report number: 12.22

NPCR Part A: Construction products and services. Ver. 2.0. April 2021, EPD-Norge.

NPCR 030 Part B for Ventilation components, Ver. 1.0, 18.05.2021, EPD Norway.

@ and narga	Program operator and publisher	Phone: +47 977 22 020
@ epd-norge	The Norwegian EPD Foundation	e-mail: post@epd-norge.no
Global program operatør	Post Box 5250 Majorstuen, 0303 Oslo, Norway	web: www.epd-norge.no
••••	Owner of the declaration:	Phone: +46 222 440 00
system air	Systemair Sverige AB	e-mail: mailbox@systemair.se
3	Industrivägen 3, 739 30 Skinnskatteberg, Sweden	web: www.systemair.com/se
	Author of the Life Cycle Assessment	Phone: +47 916 50 916
(LCA)	LCA.no AS	e-mail: post@lca.no
.no	Dokka 6A, 1671 Kråkerøy, Norway	web: www.lca.no
	Developer of EPD generator	Phone: +47 916 50 916
(LCA)	LCA.no AS	e-mail: post@lca.no
.no	Dokka 6A, 1671 Kråkerøy, Norway	web: www.lca.no
ECO PLATFORM	ECO Platform	web: www.eco-platform.org
VERIFIED	ECO Portal	web: ECO Portal