

Environmental product declaration

in accordance with ISO 14025 and EN 15804+A2

Ella Universal chairs

Martela

The Norwegian EPD Foundation

Owner of the declaration:

Martela Oyj

Product:

Ella Universal chairs

Declared unit:

1 pcs

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core

NPCR 026:2022 Part B for Furniture

Program operator:

The Norwegian EPD Foundation

Declaration number:

NEPD-6511-5767-EN

Registration number:

NEPD-6511-5767-EN

Issue date: 30.04.2024

Valid to: 30.04.2029

EPD software:

LCAno EPD generator ID: 297060

General information

Product

Ella Universal chairs

Program operator:

The Norwegian EPD Foundation
Post Box 5250 Majorstuen, 0303 Oslo, Norway

Phone: +47 977 22 020 web: www.epd-norge.no

Declaration number:

NEPD-6511-5767-EN

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR 026:2022 Part B for Furniture

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit:

1 pcs Ella Universal chairs

Declared unit (cradle to gate) with option:

A1-A3,A4,A5,B2,B3,B4,C1,C2,C3,C4,D

Functional unit:

Ella, designed by Antti Kotilainen, is a versatile and responsibly produced range of universal chairs that will withstand the test of time and use and will always be in fashion. The range offers options for the constantly changing needs of modern workspaces, and for public indoor spaces, restaurants, cafés and co-working spaces.

General information on verification of EPD from EPD tools:

Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Verification of each EPD is made according to EPD-Norway's guidelines for verification and approval requiring that tools are i) integrated into the company's environmental management system, ii) the procedures for use of the EPD tool are approved by EPD-Norway, and iii) the process is reviewed annually by an independent third party verifier. See Appendix G of EPD-Norway's General Programme Instructions for further information on EPD tools

Verification of EPD tool:

Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPDNorway's procedures and guidelines for verification and approval of EPD tools.

Third party verifier:

Elisabet Amat, GREENIZE projects

(no signature required)

Owner of the declaration:

Martela Ovi

Contact person: Anne-Maria Peitsalo

Phone:

e-mail: anne-maria.peitsalo@martela.com

Manufacturer:

Martela Oyj Miestentie 1

02150 Espoo, Finland

Place of production:

Martela Oyj, Nummela production Ojakkalantie 10 03100 Nummela, Finland

Management system:

ISO 14001, ISO 9001, ISO 45001

Organisation no:

0114891-2

Issue date:

30.04.2024

Valid to:

30.04.2029

Year of study:

2022

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

Development and verification of EPD:

The declaration is created using EPD tool lca.tools ver EPD2022.03, developed by LCA.no. The EPD tool is integrated in the company's management system, and has been approved by EPD Norway.

Developer of EPD: Tiina Bordi

Reviewer of company-specific input data and EPD: Anne-Maria Peitsalo

Approved:

Håkon Hauan, CEO EPD-Norge

Product

Product description:

The Ella universal chair with four leg base has a light and timeless appearance. The chair is available both without upholstery or with various upholstery and material options, and with raised seating height and long armrests. The chair is stackable and row-connectable, so Ella is excellently suited for various spaces, such as cafés, for example. In the plastic version, the raw material used for the plastic in the seats and backrests of the chairs is 100% recycled.

Product specification

Ella universal chair with four leg base

Seat and backrest: Laminate (white or black) or Veneer (oak, walnut, ash or stained ash)

Metal base: black, white, red, green, brown, greige, chrome or Inspiring Colours

Materials	kg	%	Recycled share in material (kg)	Recycled share in material (%)
Metal - Steel	2,69	61,55	0,53	19,73
Plastic - Polypropylene (PP)	0,16	3,67	0,00	0,00
Wood - Plywood	1,52	34,78	0,00	0,00
Total	4,36		0,53	

Packaging	kg	%	Recycled share in material (kg)	Recycled share in material (%)
Packaging - Cardboard	1,00	90,91	0,36	36,00
Packaging - Plastic	0,10	9,09	0,00	0,00
Total incl. packaging	5,46		0,89	

Technical data:

Möbelfakta certified product

More product data available here:

https://www.martela.com/furniture/seating/universal-chairs/ella-universal-chair-with-four-leg-base

Market:

Europe

Reference service life, product

At least 10 years verified by type testing in accredited test laboratory, 5 years warranty

Reference service life, building

LCA: Calculation rules

Declared unit:

1 pcs Ella Universal chairs

Cut-off criteria:

All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

Allocation:

The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

Data quality:

Specific data for the product composition are provided by the manufacturer. They represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on registered EPDs according to EN 15804, Ostfold Research databases, ecoinvent and other LCA databases. The data quality of the raw materials in A1 is presented in the table below.

Materials	Source	Data quality	Year
Metal - Steel	ecoinvent 3.6	Database	2019
Metal - Steel	SSAB	EPD (EN15804A1) + company dataset (EN15804A2)	2020
Packaging - Cardboard	ecoinvent 3.6	Database	2019
Packaging - Plastic	ecoinvent 3.6	Database	2019
Plastic - Polypropylene (PP)	ecoinvent 3.6	Database	2019
Wood - Plywood	modified ecoinvent 3.6	Database	2019

System boundaries (X=included, MND=module not declared, MNR=module not relevant)

Р	roduct stag	ge		uction ion stage				Use stage					End of I	ife stage		Beyond the system boundaries
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De- construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling-potential
A1	A2	A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
Χ	Χ	Χ	Χ	Χ	MND	Χ	Χ	Χ	MND	MND	MND	Χ	Χ	Χ	Χ	X

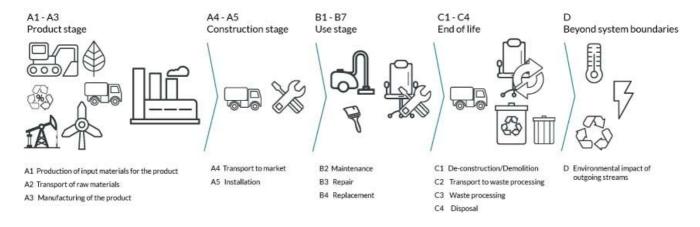
System boundary:

Product Stage / A1 Raw materials:

Martela has long partnerships with its suppliers and subcontractors, who buy raw materials to their products and components from their suppliers, respectively. Main suppliers are locating in Europe.

Wood material is coming from sustainably cultivated forest (FSC, PEFC, etc) and fabrics can be chosen from our standard collection with Öko tex or EU ecolabel certificates. Recycled materials are taken to use based on availability and when they fulfill the technical requirements set for the end products.

Materials are including the product package to our customers. Packages that are coming from suppliers are re-used in customer delivery phase (like pallets) or handled as waste in Manufacturing phase A3. Customer delivery package is disposed in Installation phase A5.


Product Stage / A2 Transport:

Transportation is calculated from suppliers location to our own factories in Nummela and Poland and between our factories when delivering components to final assembly phase in our logistics center in Nummela.

Product Stage / A3 Manufacturing:

Martela has two own factories for manufacturing these products. Poland factory is producing sewing and upholstery parts to chairs and screens. Production unit in Nummela make final assembly of the products based on customer orders.

Nummela factory is using renewable electricity and heating energy. From factory waste 98% is recycled. Poland factory is in rental premises and cannot choose its used energy, so in calculation we are using Poland average factors.

Additional technical information:

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Construction installation stage / A4 Transport:

Transportation from Martela logistics center in Nummela to our customers are calculated based on average transportation distances: in Scandinavia 1100 km incl. by ferry 300 km (between Turku - Stockholm).

Construction installation stage / A5 Assembly:

Martela products are partly assembled at customer premises. This assembling is done with hand tools and use of energy is minimal in this stage. Customer package is disposed in this stage automatically by the tool set-up, but our own installation teams take all waste back to our premises and packages are re-used (like pallets) or recycled as materials (included in A3 waste).

User stage / B1-B7:

Martela products do not require special maintenance. Cleaning with for example vacuuming and wet wiping is advice accordingly.

Based on technical durability testing according EN standard in accredited testing laboratory Martela verifies use life of at least 10 years and grants normal warranty for 5 years. Product use life can be extended from that by re-furbishing upholstery parts.

End-of-life stage / C1-C4:

LCA-tool is calculating stage C waste processing and disposal material by material for recycling and resource for energy production in Norway. Material amounts are calculated based on the material used to make the product. Average transportation distance of 85 km has added for waste management.

Beyond the system boundaries / Re-use - Recovery - Recycling -potential / D:

LCA-tool is calculating stage D potential based on material recycling and resource for energy production from materials if product end of lifecycle would be in Norway. Material amounts are calculated based on the material used to make the product

Transport from production place to user (A4)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Ship, Ferry, Sea (km)	50,0 %	300	0,034	l/tkm	10,20
Truck, 16-32 tonnes, EURO 6 (km)	36,7 %	800	0,043	l/tkm	34,40
Assembly (A5)	Unit	Value			
Waste, packaging, corrugated board box, to average treatment (kg)	kg	1,00			
Waste, packaging, plastic film (LDPE), to average treatment - A5 (kg)	kg	0,10			
Maintenance (B2)	Unit	Value			
Water, tap water (m3)	m3/DU	0,01			
Transport to waste processing (C2)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, 16-32 tonnes, EURO 6 (km)	36,7 %	85	0,043	l/tkm	3,66
Waste processing (C3)	Unit	Value			
Waste treatment per kg Polypropylene (PP), incineration with fly ash extraction - C3 (kg)	kg	0,16			
Waste treatment per kg Scrap steel, incineration with fly ash extraction (kg)	kg	2,69			
Waste treatment per kg Wood, incineration with fly ash extraction (kg)	kg	1,52			
Waste, materials to recycling (kg)	kg	0,91			
Disposal (C4)	Unit	Value			
Landfilling of ashes and residues from incineration of Scrap steel (kg)	kg	6,59			
Landfilling of ashes from incineration of Polypropylene, PP, process per kg ashes and residues - C4 (kg)	kg	0,00			
Landfilling of ashes from incineration of Wood, process per kg ashes and residues (kg)	kg	0,02			
Benefits and loads beyond the system boundaries (D)	Unit	Value			
Substitution of electricity, in Norway (MJ)	MJ	1,32			
Substitution of primary steel with net scrap (kg)	kg	0,72			
Substitution of thermal energy, district heating, in Norway (MJ)	MJ	19,91			

LCA: Results

The LCA results are presented below for the declared unit defined on page 2 of the EPD document.

_		1 3						
Environme	ental impact	Unit		A1 A2	Λ.4	٨٢	B2	D2
	Indicator GWP-total	kg CO ₂		A1-A3 5,90E+00	A4 8,14E-01	A5 1,72E+00	3,45E-03	B3 0
	GWP-fossil	kg CO ₂	-eq	1,00E+01	8,13E-01	2,41E-02	3,43E-03	0
	GWP-biogenic	kg CO ₂	-eq	-4,15E+00	3,11E-04	1,70E+00	2,16E-05	0
	GWP-luluc	kg CO ₂	-eq	1,75E-02	3,33E-04	5,96E-06	5,58E-06	0
	ODP	kg CFC11	-eq	4,70E-07	1,80E-07	3,89E-09	3,04E-10	0
	AP	mol H+	-eq	3,28E-02	7,23E-03	8,64E-05	2,00E-05	0
	EP-FreshWater	kg P -e	eq	1,91E-04	5,81E-06	1,49E-07	2,74E-07	0
	EP-Marine	kg N -e	eq	8,07E-03	1,71E-03	3,43E-05	3,17E-06	0
-	EP-Terrestial	mol N -	eq	9,14E-02	1,90E-02	3,09E-04	3,69E-05	0
	POCP	kg NMVO	C -eq	2,59E-02	5,43E-03	9,04E-05	1,16E-05	0
	ADP-minerals&metals ¹	kg Sb-	eq	5,83E-05	1,90E-05	4,36E-07	9,59E-08	0
B	ADP-fossil ¹	МЈ	MJ		1,19E+01	2,59E-01	5,86E-02	0
<u>%</u>	WDP ¹	m ³		7,67E+02	9,90E+00	4,02E-01	1,05E+00	0
	Indicator	Unit	B4	C1	C2	C3	C4	D
	GWP-total	kg CO ₂ -eq	0	0	6,91E-02	2,97E+00	7,16E-02	-9,16E-01
	GWP-fossil	kg CO ₂ -eq	0	0	6,90E-02	4,39E-01	7,16E-02	-9,11E-01
	GWP-biogenic	kg CO ₂ -eq	0	0	2,86E-05	2,53E+00	5,42E-05	-6,77E-04
	GWP-luluc	kg CO ₂ -eq	0	0	2,46E-05	7,00E-06	2,20E-05	-4,33E-03
Ö	ODP	kg CFC11 -eq	0	0	1,56E-08	3,07E-09	2,27E-08	-8,41E-03
Œ.	АР	mol H+ -eq	0	0	1,98E-04	3,81E-04	5,15E-04	-4,91E-03
	EP-FreshWater	kg P -eq	0	0	5,51E-07	7,66E-07	7,05E-07	-5,92E-05
	EP-Marine	kg N -eq	0	0	3,92E-05	1,73E-04	1,84E-04	-1,13E-03
*	EP-Terrestial	mol N -eq	0	0	4,39E-04	1,85E-03	2,04E-03	-1,17E-02
	РОСР	kg NMVOC -eq	0	0	1,68E-04	4,77E-04	5,87E-04	-4,91E-03
	ADP-minerals&metals ¹	kg Sb-eq	0	0	1,91E-06	1,75E-07	1,27E-06	-1,49E-05
	ADP-minerals&metals ¹ ADP-fossil ¹	kg Sb-eq	0	0	1,91E-06 1,04E+00	1,75E-07 3,04E-01	1,27E-06 1,67E+00	-1,49E-05 -8,35E+00

GWP-total = Global Warming Potential total; GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment: EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption

Remarks to environmental impacts

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009"

^{*}INA Indicator Not Assessed

^{1.} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

Additional er	nvironmental impa	t indicators						
	Indicator	Unit		A1-A3	A4	A5	B2	В3
	PM	Disease incidence		6,99E-07	4,42E-08	1,31E-09	1,68E-10	0
(*) L	IRP ²	kgBq U235 -eq		5,67E-01	5,19E-02	1,12E-03	4,05E-04	0
4	ETP-fw ¹	CTUe		2,06E+02	8,47E+00	3,33E-01	6,34E-02	0
44. *** <u>B</u>	HTP-c ¹	CTUh		8,75E-09	0,00E+00	1,00E-11	9,00E-12	0
48° B	HTP-nc ¹	CTUh		9,34E-08	9,44E-09	4,08E-10	2,11E-10	0
	SQP ¹	dimensionless		3,89E+02	7,13E+00	2,09E-01	1,64E-02	0
I	ndicator	Unit	B4	C1	C2	C3	C4	D
	PM	Disease incidence	0	0	4,23E-09	7,36E-09	9,49E-09	-1,24E-07
	IRP ²	kgBq U235 -eq	0	0	4,56E-03	7,12E-04	6,68E-03	-7,69E-03
	ETP-fw ¹	CTUe	0	0	7,73E-01	1,40E+00	9,59E-01	-5,33E+01
28. * *** <u>B</u>	HTP-c ¹	CTUh	0	0	0,00E+00	1,89E-10	3,40E-11	-3,99E-09
₩ <u>.</u>	HTP-nc ¹	CTUh	0	0	8,45E-10	3,59E-09	8,73E-10	7,46E-08
	SQP ¹	dimensionless	0	0	7,30E-01	5,77E-02	3,63E+00	-1,15E+01

PM = Particulate Matter emissions; IRP = Ionizing radiation – human health; ETP-fw = Eco toxicity – freshwater; HTP-c = Human toxicity – cancer effects; HTP-nc = Human toxicity – non cancer effects; SQP = Soil Quality (dimensionless)

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009"

^{*}INA Indicator Not Assessed

^{1.} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

^{2.} This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

Resource use									
	Indicator		Uı	nit	A1-A3	A4	A5	B2	В3
	PERE		MJ		6,56E+01	1,54E-01	4,55E-03	7,96E-03	0
	PERM		M	۸J	2,94E+01	0,00E+00	-8,20E+00	0,00E+00	0
₽ .	PERT		N	۸J	9,50E+01	1,54E-01	-8,20E+00	7,96E-03	0
4	PENRE		N	۸J	1,32E+02	1,19E+01	2,59E-01	5,86E-02	0
. La	PENRM		N	۸J	9,49E+00	0,00E+00	-4,25E+00	0,00E+00	0
IA	PENRT		N	۸J	1,41E+02	1,19E+01	-3,99E+00	5,86E-02	0
<u></u>	SM		k	g	8,90E-01	0,00E+00	0,00E+00	0,00E+00	0
2	RSF		MJ		2,62E-01	5,36E-03	1,45E-04	6,38E-04	0
	NRSF		МЈ		2,19E-01	1,80E-02	5,66E-04	6,29E-04	0
&	FW		m ³		1,14E-01	1,15E-03	1,24E-04	1,01E-02	0
				•	,	,	,	.,	
	ndicator	Unit		B4	C1	C2	C3	C4	D
<u>्र</u> ्र	ndicator PERE	Unit MJ	it						
			it	B4	C1	C2	C3	C4	D
Ç.	PERE	MJ	it J	B4 0	C1 0	C2 1,49E-02	C3 1,22E-02	C4 3,02E-02	D -1,07E+01
E	PERE PERM	МЛ	J	0 0	C1 0 0	C2 1,49E-02 0,00E+00	C3 1,22E-02 -2,12E+01	C4 3,02E-02 0,00E+00	D -1,07E+01 0,00E+00
्र (हे) 1] ्रह्	PERE PERM PERT	W1 W1	it J J	B4 0 0	C1 0 0	C2 1,49E-02 0,00E+00 1,49E-02	C3 1,22E-02 -2,12E+01 -2,12E+01	C4 3,02E-02 0,00E+00 3,01E-02	D -1,07E+01 0,00E+00 -1,07E+01
 ₽ 	PERE PERM PERT PENRE	мл мл мл	it J J	B4 0 0 0 0	C1 0 0 0	C2 1,49E-02 0,00E+00 1,49E-02 1,04E+00	C3 1,22E-02 -2,12E+01 -2,12E+01 3,04E-01	C4 3,02E-02 0,00E+00 3,01E-02 1,67E+00	D -1,07E+01 0,00E+00 -1,07E+01 -8,35E+00
	PERE PERM PERT PENRE PENRM	мл мл мл мл	it	B4 0 0 0 0	C1 0 0 0 0	C2 1,49E-02 0,00E+00 1,49E-02 1,04E+00 0,00E+00	C3 1,22E-02 -2,12E+01 -2,12E+01 3,04E-01 -5,24E+00	C4 3,02E-02 0,00E+00 3,01E-02 1,67E+00 0,00E+00	D -1,07E+01 0,00E+00 -1,07E+01 -8,35E+00 0,00E+00
	PERE PERM PERT PENRE PENRM PENRT	мл мл мл мл мл	it	B4 0 0 0 0 0	C1 0 0 0 0 0	C2 1,49E-02 0,00E+00 1,49E-02 1,04E+00 0,00E+00 1,04E+00	C3 1,22E-02 -2,12E+01 -2,12E+01 3,04E-01 -5,24E+00 -4,94E+00	C4 3,02E-02 0,00E+00 3,01E-02 1,67E+00 0,00E+00 1,67E+00	D -1,07E+01 0,00E+00 -1,07E+01 -8,35E+00 0,00E+00 -8,35E+00
	PERE PERM PERT PENRE PENRM PENRT SM	MJ MJ MJ MJ kg	it	B4 0 0 0 0 0 0	C1 0 0 0 0 0 0	C2 1,49E-02 0,00E+00 1,49E-02 1,04E+00 0,00E+00 1,04E+00 0,00E+00	C3 1,22E-02 -2,12E+01 -2,12E+01 3,04E-01 -5,24E+00 -4,94E+00 0,00E+00	C4 3,02E-02 0,00E+00 3,01E-02 1,67E+00 0,00E+00 1,67E+00 0,00E+00	D -1,07E+01 0,00E+00 -1,07E+01 -8,35E+00 0,00E+00 -8,35E+00 0,00E+00

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non renewable primary energy resources used as raw materials; PENRM = Use of non renewable primary energy resources; SM = Use of secondary materials; PENRM = Use of renewable primary energy resources; SM = Use of secondary materials; PENRM = Use of fresh water

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life - Waste									
	Indicator			nit	A1-A3	A4	A5	B2	В3
	HWD	kg		g	4,68E-02	5,91E-04	0,00E+00	1,11E-05	0
Ī	NHWD	kg		1,12E+00	4,82E-01	1,10E+00	7,11E-04	0	
**	RWD		kg		1,54E-03	8,15E-05	0,00E+00	3,43E-07	0
In	dicator		Unit	B4	C1	C2	C3	C4	D
	HWD		kg	0	0	5,38E-05	0,00E+00	6,57E+00	-4,21E-03
Ī	NHWD		kg	0	0	5,07E-02	0,00E+00	4,35E-02	-3,64E-01
ā	RWD		kg	0	0	7,11E-06	0,00E+00	1,03E-05	-6,45E-06

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life - Output flow	End of life - Output flow											
Ind	Indicator			A1-A3	A4	A5	B2	В3				
@▷	CRU	kg		0,00E+00	0,00E+00	0,00E+00	0,00E+00	0				
ቆ▷	MFR	kg		3,11E-01	0,00E+00	9,81E-01	0,00E+00	0				
DF	MER	kg		2,28E-01	0,00E+00	6,99E-02	0,00E+00	0				
50	EEE	МЈ		1,69E-01	0,00E+00	5,72E-02	0,00E+00	0				
DØ.	EET	МЈ		2,56E+00	0,00E+00	8,65E-01	0,00E+00	0				
Indicato	or	Unit	B4	C1	C2	C3	C4	D				
∅ >	CRU	kg	0	0	0,00E+00	0,00E+00	0,00E+00	0,00E+00				
\$>	MFR	kg	0	0	0,00E+00	9,11E-01	0,00E+00	0,00E+00				
DF	MER	kg	0	0	0,00E+00	4,36E+00	0,00E+00	0,00E+00				
₹ D	EEE	MJ	0	0	0,00E+00	1,39E+00	0,00E+00	0,00E+00				
D®	EET	MJ	0	0	0,00E+00	2,10E+01	0,00E+00	0,00E+00				

CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported energy electrical; EET = Exported energy thermal

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

Biogenic Carbon Content								
Indicator	Unit	At the factory gate						
Biogenic carbon content in product	kg C	6,90E-01						
Biogenic carbon content in accompanying packaging	kg C	4,63E-01						

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2

Additional requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Data source	Amount	Unit
Electricity, Finland (kWh)	ecoinvent 3.6	255,20	g CO2-eq/kWh

Dangerous substances

The product contains no substances given by the REACH Candidate list.

Indoor environment

Additional Environmental Information

Key Environmental Indicators

Key environmental indicators	Unit	A1-A3	A4	A1-C4	A1-D
GWPtotal	kg CO ₂ -eq	5,90	0,81	11,55	10,63
Total energy consumption	MJ	197,87	12,09	213,42	194,60
Amount of recycled materials	%	16,28			

Additional environmental impact indicators required in NPCR Part A for construction products							
Indicator	Unit	Unit		A4	A5	B2	В3
GWPIOBC	kg CO ₂ -eq	kg CO ₂ -eq		8,14E-01	2,41E-02	3,45E-03	0
Indicator	Unit	B4	C1	C2	C3	C4	D
GWPIOBC	kg CO ₂ -eq	0	0	6,91E-02	4,39E-01	7,17E-02	-1,31E+00

GWP-IOBC: Global warming potential calculated according to the principle of instantaneous oxidation. In order to increase the transparency of biogenic carbon contribution to climate impact, the indicator GWP-IOBC is required as it declares climate impacts calculated according to the principle of instantaneous oxidation. GWP-IOBC is also referred to as GWP-GHG in context to Swedish public procurement legislation.

Variants and Options

Key environmental indicators (A1-A3) for variants of this EPD						
Variants	Weight (kg)	GWPtotal (kg CO ₂ - eq)	Total energy consumption (MJ)	Amount of recycled materials (%)		
Ella with wooden legs and wooden seat and back	4,59	-4,83	188,69	6,34		
Ella with sled base and with seat and back made of recycled plastic	5,13	11,35	185,01	37,62		
Ella bar stool with wooden back and upholstered seat (98% recycled PE)	6,68	15,40	311,15	19,44		
Ella with 4-leg base and castors, upholstered seat and back (98% recycled PE)	11,75	34,81	540,74	20,67		
Ella with 5-star base and height adjustment, upholstered (98% recycled PE)	12,33	38,10	678,18	29,55		

Bibliography

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures.

ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines.

EN 15804:2012+A2:2019 Environmental product declaration - Core rules for the product category of construction products.

ISO 21930:2017 Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products.

ecoinvent v3, Allocation, cut-off by classification, Swiss Centre of Life Cycle Inventories.

Iversen et al., (2021) eEPD v2021.09 Background information for EPD generator tool system verification, LCA.no Report number: 07.21 Ruud et al., (2023) EPD generator for NPCR026 Part B for Furniture - Background information for EPD generator application and LCA data, LCA.no report number 01.23

NPCR Part A: Construction products and services. Ver. 2.0. March 2021, EPD-Norge.

NPCR 026 Part B for Furniture. Ver. 2.0 March 2022, EPD-Norge.

@ and narway	Program operator and publisher	Phone: +47 977 22 020
© epd-norway	The Norwegian EPD Foundation	e-mail: post@epd-norge.no
Global Program Operator	Post Box 5250 Majorstuen, 0303 Oslo, Norway	web: www.epd-norge.no
	Owner of the declaration:	Phone:
Martela	Martela Oyj	e-mail: maria.peitsalo@martela.com
	Miestentie 1, 02150 Espoo	web: martela.com
LCA	Author of the Life Cycle Assessment	Phone: +47 916 50 916
	LCA.no AS	e-mail: post@lca.no
	Dokka 6B, 1671	web: www.lca.no
	Developer of EPD generator	Phone: +47 916 50 916
(LCA)	LCA.no AS	e-mail: post@lca.no
no	Dokka 6B,1671 Kråkerøy	web: www.lca.no
EGO PLATFORM	ECO Platform	web: www.eco-platform.org
VERIFIED	ECO Portal	web: ECO Portal