

Environmental product declaration

in accordance with ISO 14025 and EN 15804+A2

Smooth PVC installation pipe 750N

The Norwegian EPD Foundation

Owner of the declaration:

Pipelife Sverige AB

Product:

Smooth PVC installation pipe 750N

Declared unit:

1 kg

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core PCR

NPCR Part A: Construction products and services. Ver. 2.0 March 2021

Program operator:

The Norwegian EPD Foundation

Declaration number:

NEPD-4417-3632-EN

Registration number:

NEPD-4417-3632-EN

Issue date:

02.05.2023

Valid to:

02.05.2028

ver-081024

EPD software:

LCAno EPD generator ID: 59951

General information

Product

Smooth PVC installation pipe 750N

Program operator:

The Norwegian EPD Foundation
Post Box 5250 Majorstuen, 0303 Oslo, Norway

Phone: +47 977 22 020 web: www.epd-norge.no

Declaration number:

NEPD-4417-3632-EN

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR Part A: Construction products and services. Ver. 2.0 March 2021

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit:

1 kg Smooth PVC installation pipe 750N

Declared unit (cradle to gate) with option:

A1-A3,A4,A5,C1,C2,C3,C4,D

Functional unit:

General information on verification of EPD from EPD tools:

Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Verification of each EPD is made according to EPD-Norway's guidelines for verification and approval requiring that tools are i) integrated into the company's environmental management system, ii) the procedures for use of the EPD tool are approved by EPD-Norway, and iii) the process is reviewed annually by an independent third party verifier. See Appendix G of EPD-Norway's General Programme Instructions for further information on EPD tools

Verification of EPD tool:

Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPDNorway's procedures and guidelines for verification and approval of EPD tools.

Third party verifier:

Michael M. Jenssen, Asplan Viak AS

(no signature required)

Owner of the declaration:

Pipelife Sverige AB Contact person: Phone: +46 513 22114 e-mail: yvette.lennartsson@pipelife.com

Manufacturer:

Pipelife Sverige AB

Place of production:

Pipelife Sverige AB Box 50 SE-524 02 Ljung , Sweden

Management system:

EN ISO 9001:2015 and EN ISO 14001:2015

Organisation no:

SE556087042901

Issue date:

02.05.2023

Valid to:

02.05.2028

Year of study:

2022

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804+A2 and seen in a construction context.

Development and verification of EPD:

The declaration is created using EPD tool lca.tools ver EPD2022.03, developed by LCA.no. The EPD tool is integrated in the company's management system, and has been approved by EPD Norway.

Developer of EPD: Yvette Lennartsson

Reviewer of company-specific input data and EPD: Bjørn Svensson

Approved:

Håkon Hauan, CEO EPD-Norge

Product

Product description:

Smooth PVC installations pipes for Electro in house applications.

Product specification

70005372, 70005373

Product related data to be found at Pipelife Sverige AB product catalogue https://catalog.pipelife.com/se

Materials	kg	%
Filler	0,09	8,86
Fire-, heat- and UV-stabilizers	0,02	2,49
Polyvinyl chloride (PVC)	0,89	88,65
Total	1,00	100,00

Technical data:

PVC material with density 580 kg/m3 Produced according EN 61 386-1,-21 Stiffness 750N

Market:

Europe, with scenario made for the Scandinavian market.

Reference service life, product

Lifetime on product calculated more than 100 years.

Reference service life, building

LCA: Calculation rules

Declared unit:

1 kg Smooth PVC installation pipe 750N

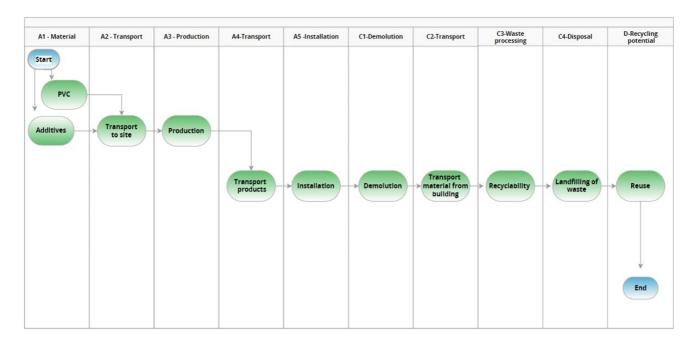
Cut-off criteria:

Allocation:

Data quality:

Specific data for the product composition are provided by the manufacturer. The data represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on EPDs according to EN 15804 and different LCA databases. The data quality of the raw materials in A1 is presented in the table below.

Materials	Source	Data quality	Year
Filler	ecoinvent 3.6	Database	2019
Fire-, heat- and UV-stabilizers	ecoinvent 3.6	Database	2019
Polyvinyl chloride (PVC)	ecoinvent 3.6	Database	2019



System boundaries (X=included, MND=module not declared, MNR=module not relevant)

	Prod	duct stag	je	Constr installati	uction on stage	Use stage				End of life stage				Beyond the system boundaries			
Raw	materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De- construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling-potential
A ²	ı	A2	A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
X		Χ	Χ	X	X	MND	MND	MND	MND	MND	MND	MND	X	Χ	X	X	X

System boundary:

EPD Process A1 - D VP PIPES

Additional technical information:

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

A5 = 5 % product losses during installation are estimated by the company. No energy use has been quantified since installation in buildings is often done by manual labour. Use of portable electrical devices (e.g., drill) usually have low energy requirements falling under the cut-off criterion of 1%.

C1= de-construction in buildings is often done by manual labour. Use of portable electrical devices (e.g., drill) usually have low energy requirements falling under the cut-off criterion of 1%.

C3 and C4 = Waste treatment of the product follows the default values provided in EN 50693, Product Category Rules for life cycle assessments of electronic and electrical products and systems, table G.4. This table specified how different types of raw materials used in A1 will likely be treated during the end-of-life of the product. Waste treatments in C3 include material recycling and incineration with and without energy recovery and fly ash extraction. Disposal in C4 consist of landfilling of different waste fractions and of ashes.

D = The recyclability of metals and plastics allows the producers a credit for the net scrap that is produced at the end of a product's life. The benefits from recycling of net scrap are described in formula from EN 15804:2012+A2:2019. Substitution of heat and electricity generated by the incineration with energy recovery of plastics is also calculated in module D.

Transport from production place to user (A4)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, 16-32 tonnes, EURO 6 (km)	36,7 %	100	0,043	l/tkm	4,30
Assembly (A5)	Unit	Value			
Product loss during installation (percentage of cable pipe)	Units/DU	0,05			
Transport to waste processing (C2)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, 16-32 tonnes, EURO 6 (km)	36,7 %	100	0,043	l/tkm	4,30
Waste processing (C3)	Unit	Value			
Waste treatment of polyvinylchloride (PVC), incineration with energy recovery and fly ash extraction (kg)	kg	0,44			
Disposal (C4)	Unit	Value			
Landfilling of plastic mixture (kg)	kg	0,44			
Landfilling of ashes from incineration of Polyvinylchloride (PVC), process per kg ashes and residues (kg)	kg	0,07			
Benefits and loads beyond the system boundaries (D)	Unit	Value			
Substitution of electricity (MJ)	MJ	0,45			
Substitution of thermal energy, district heating (MJ)	МЈ	6,86			

LCA: Results

The LCA results are presented below for the declared unit defined on page 2 of the EPD document.

Enviro	Environmental impact													
	Indicator	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D				
	GWP-total	kg CO ₂ -eq	2,08E+00	1,63E-02	1,29E-01	0	1,63E-02	8,88E-01	6,74E-02	-4,12E-02				
	GWP-fossil	kg CO ₂ -eq	2,07E+00	1,63E-02	1,28E-01	0	1,63E-02	8,88E-01	6,74E-02	-3,98E-02				
	GWP-biogenic	kg CO ₂ -eq	8,61E-03	6,76E-06	4,93E-04	0	6,76E-06	3,62E-04	1,26E-05	-8,21E-05				
	GWP-Iuluc	kg CO ₂ -eq	3,36E-03	5,81E-06	1,86E-04	0	5,81E-06	6,94E-05	3,03E-06	-1,37E-03				
Ö	ODP	kg CFC11 -eq	1,09E-06	3,70E-09	5,43E-08	0	3,70E-09	2,92E-08	2,46E-09	-2,90E-03				
Œ	АР	mol H+ -eq	9,42E-03	4,69E-05	6,12E-04	0	4,69E-05	5,14E-04	8,06E-05	-3,28E-04				
-	EP-FreshWater	kg P -eq	8,83E-05	1,31E-07	4,67E-06	0	1,31E-07	2,61E-06	2,84E-07	-3,53E-06				
***	EP-Marine	kg N -eq	1,71E-03	9,29E-06	1,15E-04	0	9,29E-06	1,25E-04	7,83E-05	-1,07E-04				
-	EP-Terrestial	mol N -eq	1,84E-02	1,04E-04	1,27E-03	0	1,04E-04	1,34E-03	2,92E-04	-1,16E-03				
	POCP	kg NMVOC -eq	6,26E-03	3,98E-05	4,04E-04	0	3,98E-05	3,80E-04	9,12E-05	-3,19E-04				
	ADP-minerals&metals ¹	kg Sb-eq	5,10E-05	4,51E-07	2,85E-06	0	4,51E-07	1,87E-06	8,61E-08	-3,96E-07				
A	ADP-fossil ¹	MJ	5,38E+01	2,47E-01	2,80E+00	0	2,47E-01	1,17E+00	2,05E-01	-5,69E-01				
<u>%</u>	WDP ¹	m ³	5,09E+02	2,39E-01	2,00E+01	0	2,39E-01	2,39E+01	2,61E+00	-7,08E+00				

GWP-total = Global Warming Potential total; GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment: EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption

Remarks to environmental impacts

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009"

^{*}INA Indicator Not Assessed

^{1.} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

Addition	Additional environmental impact indicators													
In	ndicator	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D				
	PM	Disease incidence	7,31E-08	1,00E-09	5,33E-09	0	1,00E-09	3,34E-09	1,12E-09	-1,99E-08				
	IRP ²	kgBq U235 -eq	2,29E-01	1,08E-03	9,81E-03	0	1,08E-03	5,68E-03	1,04E-03	-3,63E-03				
	ETP-fw ¹	CTUe	3,34E+01	1,83E-01	2,46E+00	0	1,83E-01	5,60E+01	4,14E-01	-3,09E+00				
40.* *****	HTP-c ¹	CTUh	1,48E-09	0,00E+00	8,30E-11	0	0,00E+00	1,25E-10	1,80E-11	-5,70E-11				
48° E	HTP-nc ¹	CTUh	4,10E-08	2,00E-10	1,98E-09	0	2,00E-10	1,32E-08	6,59E-10	-2,97E-09				
	SQP ¹	dimensionless	8,53E+00	1,73E-01	4,48E-01	0	1,73E-01	4,26E-01	7,22E-01	-3,80E+00				

PM = Particulate Matter emissions; IRP = Ionizing radiation – human health; ETP-fw = Eco toxicity – freshwater; HTP-c = Human toxicity – cancer effects; HTP-nc = Human toxicity – non cancer effects; SQP = Soil Quality (dimensionless)

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

^{1.} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

^{2.} This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

Resource use										
	ndicator	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
i ji	PERE	MJ	4,00E+00	3,54E-03	1,79E-01	0	3,54E-03	1,49E-01	1,40E-02	-3,51E+00
	PERM	MJ	0,00E+00	0,00E+00	0,00E+00	0	0,00E+00	0,00E+00	0,00E+00	0,00E+00
್ಕ್ಯ	PERT	МЈ	4,00E+00	3,54E-03	1,79E-01	0	3,54E-03	1,49E-01	1,40E-02	-3,51E+00
	PENRE	МЈ	3,41E+01	2,47E-01	1,82E+00	0	2,47E-01	1,17E+00	2,05E-01	-5,69E-01
ê.	PENRM	МЈ	2,00E+01	0,00E+00	1,00E+00	0	0,00E+00	0,00E+00	0,00E+00	0,00E+00
IA	PENRT	МЈ	5,41E+01	2,47E-01	2,82E+00	0	2,47E-01	1,17E+00	2,05E-01	-5,69E-01
	SM	kg	1,51E-02	0,00E+00	7,69E-04	0	0,00E+00	0,00E+00	0,00E+00	0,00E+00
2	RSF	МЈ	1,68E-01	1,26E-04	3,31E-03	0	1,26E-04	2,70E-03	3,25E-04	-6,15E-04
	NRSF	МЈ	5,17E-02	4,52E-04	2,17E-03	0	4,52E-04	0,00E+00	1,67E-03	-2,08E-01
%	FW	m^3	2,43E-01	2,64E-05	1,21E-02	0	2,64E-05	2,80E-02	2,23E-04	-4,23E-03

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non renewable primary energy resources used as raw materials; PENRM = Use of non renewable primary energy resources; SM = Use of secondary materials; RESF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life - Was	End of life - Waste												
Inc	dicator	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D			
ā	HWD	kg	5,75E-03	1,27E-05	5,33E-04	0	1,27E-05	0,00E+00	6,37E-03	-2,67E-05			
Ū	NHWD	kg	2,94E-01	1,20E-02	1,85E-02	0	1,20E-02	0,00E+00	5,08E-01	-1,34E-02			
8	RWD	kg	1,59E-04	1,68E-06	6,45E-06	0	1,68E-06	0,00E+00	9,12E-07	-2,98E-06			

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life - Outpu	End of life - Output flow													
Indicat	tor	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D				
∅ D	CRU	kg	0,00E+00	0,00E+00	0,00E+00	0	0,00E+00	0,00E+00	0,00E+00	0,00E+00				
\$>	MFR	kg	6,36E-03	0,00E+00	3,18E-04	0	0,00E+00	0,00E+00	3,98E-05	0,00E+00				
DF	MER	kg	1,32E-02	0,00E+00	6,59E-04	0	0,00E+00	4,43E-01	9,72E-07	0,00E+00				
50	EEE	MJ	7,72E-03	0,00E+00	3,86E-04	0	0,00E+00	4,53E-01	6,31E-05	0,00E+00				
DØ.	EET	MJ	1,17E-01	0,00E+00	5,84E-03	0	0,00E+00	6,86E+00	9,54E-04	0,00E+00				

CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported energy electrical; EET = Exported energy thermal

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

Biogenic Carbon Content										
Unit	At the factory gate									
kg C	0,00E+00									
kg C	0,00E+00									
	kg C									

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2

Additional requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Source	Amount	Unit
Electricity, Sweden (kWh)	ecoinvent 3.6	54,94	g CO2-eq/kWh

Dangerous substances

The product contains no substances given by the REACH Candidate list.

Indoor environment

Additional Environmental Information

Additional environmen	ntal impact indicators req	uired in NF	CR Part A	for constru	ction prod	ucts						
Indicator	Indicator Unit A1-A3 A4 A5 C1 C2 C3 C4 D											
GWPIOBC	kg CO ₂ -eq	2,00E+00	1,63E-02	1,25E-01	0	1,63E-02	8,91E-01	6,82E-02	-4,06E-02			

GWP-IOBC: Global warming potential calculated according to the principle of instantaneous oxidation. In order to increase the transparency of biogenic carbon contribution to climate impact, the indicator GWP-IOBC is required as it declares climate impacts calculated according to the principle of instantaneous oxidation. GWP-IOBC is also referred to as GWP-GHG in context to Swedish public procurement legislation.

Bibliography

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures.

ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines.

EN 15804:2012+A2:2019 Environmental product declaration - Core rules for the product category of construction products.

ISO 21930:2017 Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products.

ecoinvent v3, Allocation, cut-off by classification, Swiss Centre of Life Cycle Inventories.

Iversen et al., (2021) eEPD v2021.09 Background information for EPD generator tool system verification, LCA.no rapportnummer: : 07.21. Vold, et al., (2019) EPD generator for Pipelife - Background information for customer application and LCA data. report number 08.19 NPCR Part A: Construction products and services. Ver. 2.0. March 2021, EPD-Norge.

@ and narga	Program operator and publisher		Phone:	+47 977 22 020
© epd-norge	The Norwegian EPD Foundation		e-mail:	post@epd-norge.no
Global program operatør	Post Box 5250 Majorstuen, 0303 Oslo, Norway		web:	www.epd-norge.no
PIPELIFE O	Owner of the declaration:	Phone:	+46 51	13 22114
	Pipelife Sverige AB	e-mail:	yvette.	lennartsson@pipelife.com
	Box 50 , SE-524 02 Ljung	web:		
LCA	Author of the Life Cycle Assessment		Phone:	+47 916 50 916
	LCA.no AS		e-mail:	post@lca.no
	Dokka 6A, 1671 Kråkerøy		web:	www.lca.no
LCA	Developer of EPD generator		Phone:	+47 916 50 916
	LCA.no AS		e-mail:	post@lca.no
.no	Dokka 6A, 1671 Kråkerøy		web:	www.lca.no
ECO PLATFORM	ECO Platform		web:	www.eco-platform.org
	ECO Portal		web:	ECO Portal