

Environmental product declaration

In accordance with 14025 and EN15804+A2

AFUMEX PLUS 5G2,5

The Norwegian EPD Foundation

Owner of the declaration: Prysmian Group Danmark A/S

Product: AFUMEX PLUS 5G2,5

Declared unit: 1 m

This declaration is based on Product Category Rules: CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR 027 Part B for Electrical cables and wires

EPD Software: LCA.no EPD generator **Program operator:** The Norwegian EPD Foundation

Declaration number:

NEPD-4073-3102-EN

Registration number:

NEPD-4073-31102-EN

Issue date: 06.01.2023

Valid to: 06.01.2028

System ID:

55883

General information

Product AFUMEX PLUS 5G2,5

Program operator:

Post Box 5250 Majorstuen, 0303 Oslo, Norway The Norwegian EPD Foundation Phone: +47 23 08 80 00 web: post@epd-norge.no

Declaration number: NEPD-4073-3102-EN

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR 027 Part B for Electrical cables and wires

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit:

1 m AFUMEX PLUS 5G2,5

Declared unit with option: A1,A2,A3,A4,A5,B1,B2,B3,B4,B5,B6,B7,C1,C2,C3,C4,D

Functional unit:

1m of installed cable AFUMEX PLUS 5G2,5mm², used to transmit a reference energy of 1Amp. over a period of 30 years

General information on verification of EPD from EPD tools:

Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Individualthird party verification of each EPD is not required when the EPD tool is i) integrated into the company's environmental management system, ii) the procedures for use of the EPD tool are approved by EPDNorway, and iii)the process is reviewed annualy. See Appendix G of EPD-Norway's General Programme Instructions for further information on EPD tools.

Verification of EPD tool:

Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPDNorway's procedures and guidelines for verification and approval of EPD tools. Approval number: NEPDT32. Third party verifier:

Vito D'Incognito - Take Care International (no signature required)

Owner of the declaration:

Prysmian Group Danmark A/S Contact person: Per Knudsen Phone: +45 60392605 e-mail: per.knudsen@prysmiangroup.com

Manufacturer:

Prysmian Group Danmark A/S Roskildevej 22 , 2620 Albertslund Denmark

Place of production:

Prysmian Group production site Keila (Baltics Paldiski maantee 31 , 76606 Keila Estonia

Management system:

ISO 9001, ISO 14001, ISO 45001

Organisation no:

DK27917887

Issue date: 06.01.2023

Valid to: 06.01.2028

Year of study:

2021

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

Development and verification of EPD:

The declaration is created using EPD tool lca.tools ver EPD2022.03, developed by LCA.no. The EPD tool is integrated in the company's management system, and has been approved by EPD Norway. Approval number:

Developer of EPD:

Per Knudsen

Reviewer of company-specific input data and EPD:

Anders Nymark

Approved:

Håkon Hauan, CEO EPD-Norge

Product

Product description:

Halogen-free and fire-retardant light installation cable for fixed indoor installation in walls, trays, ducts or outdoors, in pipes or directly in soil. Not suitable for application in vibrated concrete. Max. conductor temperature 90°C. Outer sheath is UV-stabilized and the cable has CPR fire class Eca.

Product specification

Conductor material Copper Conductor surface Bare Core insulation material XLPE Material inner sheath Halogenfree polymer Material outer sheath Halogenfree polymer Cable shape Round Nominal voltage U0 [V] 300 Nominal voltage U [V] 500 Test voltage [kV] 2,5

Materials	kg	%
	0,00	0,23
Metal - Copper	0,11	53,12
Plastic - Polyethylene	0,09	46,05
Tape - Polyester	0,00	0,60
Total	0,20	

Technical data:

AFUMEX PLUS 5G2,5mm² SAP code 20155130

EN 50575 Cables in construction works subject to reaction to fire.

EN 60228 Conductor standard.

EN 50363 Standard for insulation, sheathing and covering materials.

EN 50267-2-1 Halogen-free: Fire test for emission of halogens (<0,5% halogen).

EN 50267-2-2 Fire test for emission of acidity or corrosive gasser (pH = 4,3, Conductivity = 10µS).

REACH Regulation concerning the Registration, Evaluation, Authorization and Restriction of Chemicals.

ROHS RoHS compliance - restriction of hazardous substances directive

Market:

Danish

Reference service life, product

The reference service life of the product is highly dependent on the conditions of use, estimated to be at least 30 years given suitable conditions.

Reference service life, building or construction works

Estimated to be 30 years

LCA: Calculation rules

Declared unit:

1 m AFUMEX PLUS 5G2,5

Cut-off criteria:

All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

Allocation:

The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

Data quality:

Specific data for the product composition are provided by the manufacturer. The data represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on EPDs according to EN 15804 and different LCA databases. The data quality of the raw materials in A1 is presented in the table below.

Materials	Source	Data quality	Year
Metal - Copper	ecoinvent 3.6	Database	2019
Plastic - Polyethylene	ecoinvent 3.6	Database	2019
Tape - Polyester	ecoinvent 3.6	Database	2019

Prysmian Group

System boundaries (X=included, MND=module not declared, MNR=module not relevant)

	Product	stage		uction ion stage		Use stage							End of life stage			
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De- construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling- potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

System boundary:

The flowchart below illustrates the system boundaries of the analysis:

Additional technical information:

Article 20155130AFUMEX PLUS 5G2,5 represent the product with the highest expenditure of materials, and energy consumption during manufacturing of the following articles in the product family:

20155125 AFUMEX PLUS 3G1,5 R100 20235709 AFUMEX PLUS 3G1,5 R100/4800 20235710 AFUMEX PLUS 3G1,5 T500 20235711 AFUMEX PLUS 3G2,5 R100/3600 20235712 AFUMEX PLUS 3G2,5 R100 20235713 AFUMEX PLUS 5G1,5 R100 20235714 AFUMEX PLUS 5G1,5 T500 20235715 AFUMEX PLUS 5G2,5 R100/3000 20235716 AFUMEX PLUS 5G2,5 T500

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD. Module A4 = An average distance between the factory and the market is considered.

Modules A5 = 2% product losses during installation are estimated by the company. No energy use for installation has been quantified since this operation is assumed to be done with other products and should be assessed at a construction works level. Cable drums are reused and assumed under the cut-off criterion of 1%.

Modules B1, B2, B3, B4, B5, and B7 = Company data shows that no significant activities have been reported for use, maintenance, repair, replacement, refurbishment, and water use. This reflects an absence of impacts during the 30 years reference service life of the cable in these modules.

Module B6 = The operational energy use of the cable is calculated based on the methodology described in PEP Ecopassport, Product Specific Rules (PSR) for wires, cables and accessories, reference PSR-0001-ed3-EN-2015 10 16. The following parameters are used to calculate the electricity loss of the cable:

- Estimate service life = 30 years
- Number of conductors = 5 units
- Use rate = 70 percent (according to appendix 1 of the PSR)
- Linear conductor resistivity = 0,0073 Ohm per meter
- Current intensity = 1 Ampere

Module C1 = For both buildings and construction works, cables will be taken out as part of a larger demolition. The energy use for cable removal compared to other heavier materials is assumed to be low. This module can therefore be included with zero impact.

Module C2 = An average distance between the market and the waste treatment facility is considered.

Modules C3 and C4 = Waste treatment of the product follows the default values provided in EN 50693, Product Category Rules for life cycle assessments of electronic and electrical products and systems, table G.4. This table specified how different types of raw materials used in A1 will likely be treated during the end-of-life of the product. Waste treatments in C3 include material recycling and incineration with and without energy recovery and fly ash extraction. Disposal in C4 consist of landfilling of different waste fractions and of ashes.

Module D = The recyclability of metals and plastics allows the producers a credit for the net scrap that is produced at the end of a product?s life. The benefits from recycling of net scrap are described in formula from EN 15804:2012+A2:2019. Substitution of heat and electricity generated by the incineration with energy recovery of plastic insulation and other parts is also calculated in module D.

Transport from production place to user (A4)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Ship, Ferry, Sea (km)	50,0 %	302	0,034	l/tkm	10,28
Truck, over 32 tonnes, EURO 5 (km)	53,3 %	1095	0,023	l/tkm	25,18
Assembly (A5)	Unit	Value			
Product loss during installation (percentage of cable)	Units/DU	0,02			
Operational energy (B6)	Unit	Value			
Electricity, Denmark (kWh)	kWh/DU	6,72			
Transport to waste processing (C2)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, over 32 tonnes, EURO 5 (km)	53,3 %	300	0,023	l/tkm	6,90
Waste processing (C3)	Unit	Value			
Copper to recycling (kg)	kg	0,06			
Waste treatment of plastic mixture, incineration with energy recovery and fly ash extraction (kg)	kg	0,00			
Waste treatment of polyethylene (PE), incineration with energy recovery and fly ash extraction (kg)	kg	0,05			
Disposal (C4)	Unit	Value			
Landfilling of ashes from incineration of Plastic mixture, process per kg ashes and residues (kg)	kg	0,00			
Landfilling of ashes from incineration of Polyethylene (PE), process per kg ashes and residues (kg)	kg	0,00			
Landfilling of copper (kg)	kg	0,04			
Landfilling of plastic mixture (kg)	kg	0,05			
Benefits and loads beyond the system boundaries (D)	Unit	Value			
Substitution of electricity (MJ)	MJ	0,09			
Substitution of primary copper with net scrap (kg)	kg	0,01			
Substitution of thermal energy, district heating (MJ)	MJ	1,36			

LCA: Results

The LCA results are presented below for the declared unit defined on page 2 of the EPD document.

Envir	onmental impact		Environmental impact											
	Indicator			Unit	A1	A2	A3	A4	A5	B1	B2	B3		
P	GWP-total		kg	CO ₂ -eq	1,02E+00	2,97E-02	2,69E-02	2,67E-02	2,50E-02	0	0	0		
P	GWP-fossil		kg	CO ₂ -eq	1,00E+00	2,97E-02	2,56E-02	2,67E-02	2,46E-02	0	0	0		
P	GWP-biogenic	2	kg	CO ₂ -eq	1,70E-02	1,20E-05	1,02E-03	9,93E-06	3,62E-04	0	0	0		
P	GWP-luluc		kg	CO ₂ -eq	9,52E-04	9,01E-06	2,34E-04	1,00E-05	2,40E-05	0	0	0		
Ò	ODP		kg (CFC11 -eq	5,79E-08	6,83E-09	3,01E-09	5,96E-09	1,48E-09	0	0	0		
Ê	AP		mo	l H+ -eq	7,60E-02	1,55E-04	9,69E-05	3,03E-04	1,53E-03	0	0	0		
	EP-FreshWate	r	k	g P -eq	6,05E-04	2,22E-07	9,51E-07	1,78E-07	1,21E-05	0	0	0		
	EP-Marine		k	g N -eq	3,71E-03	4,48E-05	1,75E-05	7,99E-05	7,64E-05	0	0	0		
	EP-Terrestial		m	ol N -eq	5,49E-02	4,96E-04	1,99E-04	8,86E-04	1,12E-03	0	0	0		
	POCP		kg N	MVOC -eq	1,50E-02	1,53E-04	5,10E-05	2,47E-04	3,06E-04	0	0	0		
.D	ADP-minerals&me	etals ¹	kç	g Sb -eq	4,32E-04	4,96E-07	1,79E-07	3,86E-07	8,65E-06	0	0	0		
Ð	ADP-fossil ¹			MJ	1,57E+01	4,59E-01	6,50E-01	3,96E-01	3,45E-01	0	0	0		
%	WDP ¹			m ³	1,20E+01	3,44E-01	3,58E+01	2,55E-01	9,79E-01	0	0	0		
								,	·					
	Indicator	Ur	nit	B4	B5	B6	B7	C1	C2	C3	C4	D		
P	Indicator GWP-total	Ur kg CC								C3 1,40E-01		D -2,92E-02		
P) ₂ -eq	B4	B5	B6	B7	C1	C2		C4			
-	GWP-total	kg CC	0 ₂ -eq 0 ₂ -eq	B4 0	B5 0	B6 2,27E+00	B7 0	C1 0	C2 5,48E-03	1,40E-01	C4 6,02E-03	-2,92E-02		
P	GWP-total GWP-fossil	kg CC kg CC) ₂ -eq) ₂ -eq) ₂ -eq	B4 0 0	B5 0 0	B6 2,27E+00 2,24E+00	B7 0 0	C1 0 0	C2 5,48E-03 5,48E-03	1,40E-01 1,40E-01	C4 6,02E-03 6,02E-03	-2,92E-02 -2,88E-02		
P	GWP-total GWP-fossil GWP-biogenic	kg CC kg CC kg CC	0 ₂ -eq 0 ₂ -eq 0 ₂ -eq 0 ₂ -eq	B4 0 0 0	B5 0 0 0	B6 2,27E+00 2,24E+00 2,33E-02	B7 0 0 0	C1 0 0 0	C2 5,48E-03 5,48E-03 2,25E-06	1,40E-01 1,40E-01 1,15E-06	C4 6,02E-03 6,02E-03 5,21E-07	-2,92E-02 -2,88E-02 -1,13E-04		
	GWP-total GWP-fossil GWP-biogenic GWP-luluc	kg CC kg CC kg CC kg CC) ₂ -eq) ₂ -eq) ₂ -eq) ₂ -eq) ₂ -eq :11 -eq	B4 0 0 0 0	B5 0 0 0 0	B6 2,27E+00 2,24E+00 2,33E-02 3,02E-03	B7 0 0 0 0	C1 0 0 0 0	C2 5,48E-03 5,48E-03 2,25E-06 1,60E-06	1,40E-01 1,40E-01 1,15E-06 1,70E-07	C4 6,02E-03 6,02E-03 5,21E-07 3,54E-07	-2,92E-02 -2,88E-02 -1,13E-04 -2,94E-04		
	GWP-total GWP-fossil GWP-biogenic GWP-luluc ODP	kg CC kg CC kg CC kg CC	 b₂ -eq b₂ -eq b₂ -eq b₂ -eq b₂ -eq call -eq + -eq 	B4 0 0 0 0 0	B5 0 0 0 0 0	B6 2,27E+00 2,24E+00 2,33E-02 3,02E-03 7,64E-08	B7 0 0 0 0 0	C1 0 0 0 0 0	C2 5,48E-03 5,48E-03 2,25E-06 1,60E-06 1,27E-09	1,40E-01 1,40E-01 1,15E-06 1,70E-07 1,10E-10	C4 6,02E-03 6,02E-03 5,21E-07 3,54E-07 3,23E-10	-2,92E-02 -2,88E-02 -1,13E-04 -2,94E-04 -5,75E-04		
	GWP-total GWP-fossil GWP-biogenic GWP-luluc ODP AP	kg CC kg CC kg CC kg CC kg CFC mol H	D ₂ -eq D ₂ -eq D ₂ -eq D ₂ -eq 111 -eq + -eq	B4 0 0 0 0 0 0 0	B5 0 0 0 0 0 0 0	B6 2,27E+00 2,24E+00 2,33E-02 3,02E-03 7,64E-08 9,00E-03	B7 0 0 0 0 0 0 0	C1 0 0 0 0 0 0 0	C2 5,48E-03 5,48E-03 2,25E-06 1,60E-06 1,27E-09 2,30E-05	1,40E-01 1,40E-01 1,15E-06 1,70E-07 1,10E-10 1,77E-05	C4 6,02E-03 6,02E-03 5,21E-07 3,54E-07 3,23E-10 8,64E-06	-2,92E-02 -2,88E-02 -1,13E-04 -2,94E-04 -5,75E-04 -3,57E-03		
	GWP-total GWP-fossil GWP-biogenic GWP-luluc ODP AP EP-FreshWater	kg CC kg CC kg CC kg CFC mol H kg P	 2 - eq 2 - eq 2 - eq 2 - eq 11 - eq + - eq - eq - eq 	B4 0 0 0 0 0 0 0 0 0	B5 0 0 0 0 0 0 0 0 0	B6 2,27E+00 2,24E+00 2,33E-02 3,02E-03 7,64E-08 9,00E-03 1,84E-04	B7 0 0 0 0 0 0 0 0	C1 0 0 0 0 0 0 0 0 0	C2 5,48E-03 5,48E-03 2,25E-06 1,60E-06 1,27E-09 2,30E-05 4,18E-08	1,40E-01 1,40E-01 1,15E-06 1,70E-07 1,10E-10 1,77E-05 1,09E-08	C4 6,02E-03 6,02E-03 5,21E-07 3,54E-07 3,23E-10 8,64E-06 1,70E-08	-2,92E-02 -2,88E-02 -1,13E-04 -2,94E-04 -5,75E-04 -3,57E-03 -2,43E-05		
	GWP-total GWP-fossil GWP-biogenic GWP-luluc ODP AP EP-FreshWater EP-Marine	kg CC kg CC kg CC kg CFC mol H kg P kg N	 2 - eq 2 - eq 2 - eq 2 - eq 11 - eq + - eq - eq - eq N - eq 	B4 0 0 0 0 0 0 0 0 0 0	B5 0 0 0 0 0 0 0 0 0 0	B6 2,27E+00 2,24E+00 2,33E-02 3,02E-03 7,64E-08 9,00E-03 1,84E-04 1,51E-03	B7 0 0 0 0 0 0 0 0 0 0	C1 0 0 0 0 0 0 0 0 0 0 0	C2 5,48E-03 5,48E-03 2,25E-06 1,60E-06 1,27E-09 2,30E-05 4,18E-08 6,93E-06	1,40E-01 1,40E-01 1,15E-06 1,70E-07 1,10E-10 1,77E-05 1,09E-08 8,48E-06	C4 6,02E-03 6,02E-03 5,21E-07 3,54E-07 3,23E-10 8,64E-06 1,70E-08 8,61E-06	-2,92E-02 -2,88E-02 -1,13E-04 -2,94E-04 -5,75E-04 -3,57E-03 -2,43E-05 -1,65E-04		
	GWP-total GWP-fossil GWP-biogenic GWP-luluc ODP AP EP-FreshWater EP-Marine EP-Terrestial	kg CC kg CC kg CC kg CFC mol H kg P kg N mol 1	 b₂ -eq b₂ -eq b₂ -eq b₂ -eq called and a set of the set o	B4 0 0 0 0 0 0 0 0 0 0	B5 0 0 0 0 0 0 0 0 0 0 0 0	B6 2,27E+00 2,24E+00 2,33E-02 3,02E-03 7,64E-08 9,00E-03 1,84E-04 1,51E-03 2,16E-02	B7 0 0 0 0 0 0 0 0 0 0 0	C1 0 0 0 0 0 0 0 0 0 0 0 0	C2 5,48E-03 2,25E-06 1,60E-06 1,27E-09 2,30E-05 4,18E-08 6,93E-06 7,66E-05	1,40E-01 1,40E-01 1,15E-06 1,70E-07 1,10E-10 1,77E-05 1,09E-08 8,48E-06 9,17E-05	C4 6,02E-03 6,02E-03 5,21E-07 3,54E-07 3,23E-10 8,64E-06 1,70E-08 8,61E-06 3,45E-05	-2,92E-02 -2,88E-02 -1,13E-04 -2,94E-04 -5,75E-04 -3,57E-03 -2,43E-05 -1,65E-04 -2,46E-03		
	GWP-total GWP-fossil GWP-biogenic GWP-luluc ODP AP EP-FreshWater EP-Marine EP-Terrestial POCP	kg CC kg CC kg CC kg CFC mol H kg N kg N	 b₂ -eq b₂ -eq b₂ -eq b₂ -eq call -eq -eq -eq v -eq v -eq v -eq v -eq 	B4 0 0 0 0 0 0 0 0 0 0 0 0 0	B5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B6 2,27E+00 2,24E+00 2,33E-02 3,02E-03 7,64E-08 9,00E-03 1,84E-04 1,51E-03 2,16E-02 4,61E-03	B7 0 0 0 0 0 0 0 0 0 0 0 0 0	C1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C2 5,48E-03 2,25E-06 1,60E-06 1,27E-09 2,30E-05 4,18E-08 6,93E-06 7,66E-05 2,46E-05	1,40E-01 1,40E-01 1,15E-06 1,70E-07 1,10E-10 1,77E-05 1,09E-08 8,48E-06 9,17E-05 2,20E-05	C4 6,02E-03 6,02E-03 5,21E-07 3,54E-07 3,23E-10 8,64E-06 1,70E-08 8,61E-06 3,45E-05 1,09E-05	-2,92E-02 -2,88E-02 -1,13E-04 -2,94E-04 -3,57E-03 -2,43E-05 -1,65E-04 -2,46E-03 -6,69E-04		

GWP total Global Warming Potential total; GWP fossil Global Warming Potential fossil fuels ; GWP biogenic Global Warming Potential biogenic; GWP luluc Global W Potential land use change; ODP Ozone Depletion; AP Acidification; EP freshwater Eutrophication aquatic freshwater; EP marine Eutrophication aquatic marine; EP terrestrial Eutrophication terrestrial ;POCP Photochemical zone formation; ADPE Abiotic Depletion Potential minerals and metals; ADPf Abiotic Depletion Potential fossil fuels;

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

1. The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

Remarks to environmental impacts

Additio	onal enviro	onme	ntal impact indi	icators								
	Indicator		Unit		A1	A2	A3	A4	A5	B1	B2	B3
	PM		Disease incidence		1,72E-07	2,55E-09	4,55E-10	1,94E-09	3,56E-09	0	0	0
(***) B	IRP ²		kgBq U235	5-eq	3,35E-02	2,00E-03	1,59E-02	1,73E-03	1,07E-03	0	0	0
	ETP-fv	v ¹	CTUe		7,40E+02	3,33E-01	4,79E-01	2,76E-01	1,53E+01	0	0	0
46.* ****	HTP-0	1	CTUh		1,03E-08	0,00E+00	1,20E-11	0,00E+00	2,07E-10	0	0	0
80 2	HTP-n	c ¹	CTUh		8,59E-07	3,22E-10	3,38E-10	2,81E-10	1,72E-08	0	0	0
è	SQP	I	dimensior	nless	1,04E+01	5,13E-01	3,97E-01	3,68E-01	2,37E-01	0	0	0
Inc	licator		Unit	B4	B5	B6	B7	C1	C2	C3	C4	D
	PM	Di	sease incidence	0	0	4,41E-08	0	0	4,82E-10	6,90E-11	1,59E-10	-1,09E-08
(**) E	IRP ²	ŀ	kgBq U235 -eq	0	0	1,42E-01	0	0	3,73E-04	1,58E-05	1,50E-04	-9,53E-04
	ETP-fw ¹		CTUe	0	0	5,18E+01	0	0	6,23E-02	3,01E-02	2,63E+01	-3,28E+01
46. **** ****	HTP-c ¹		CTUh	0	0	1,02E-09	0	0	0,00E+00	3,00E-12	1,00E-12	-4,64E-10
48 Q	HTP-nc ¹		CTUh	0	0	3,39E-08	0	0	6,00E-11	1,20E-10	3,10E-11	-3,95E-08
6	SQP ¹	(dimensionless	0	0	4,78E+01	0	0	9,78E-02	1,14E-03	6,70E-02	-1,16E+00

PM Particulate Matter emissions; IRP Ionizing radiation – human health; ETP-fw Eco toxicity – freshwater; HTP-c Human toxicity – cancer effects; HTP-nc Human toxicity – non cancer effects; SQP Soil Quality (dimensionless)

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009"

*INA Indicator Not Assessed

1. The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

2. This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

Prysmian Group

Resource us	e										
	Indicator		Unit	A1	A2	A3	A4	A5	B1	B2	B3
i de la companya de l	PERE		MJ	2,40E+00	5,69E-03	2,01E-01	4,45E-03	5,23E-02	0	0	0
1 1 1 1	PERM	I	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0	0	0
୍କିନ୍ତ	PERT		MJ	2,40E+00	5,69E-03	2,01E-01	4,45E-03	5,23E-02	0	0	0
B	PENRI	E	MJ	1,17E+01	4,59E-01	6,73E-01	3,96E-01	2,65E-01	0	0	0
å.	PENRM	Л	MJ	4,11E+00	0,00E+00	0,00E+00	0,00E+00	3,51E-03	0	0	0
IA	PENR	г	MJ	1,58E+01	4,59E-01	6,73E-01	3,96E-01	2,68E-01	0	0	0
	SM		kg	5,74E-02	0,00E+00	1,89E-04	0,00E+00	1,16E-03	0	0	0
L	RSF		MJ	2,27E-02	1,98E-04	2,35E-03	1,50E-04	5,09E-04	0	0	0
Ū.	NRSF		MJ	1,81E-02	6,29E-04	7,52E-03	2,83E-04	5,38E-04	0	0	0
\$	FW		m ³	1,90E-02	5,14E-05	7,52E-04	3,95E-05	3,98E-04	0	0	0
	dicator	Unit	B4	B5	B6	В7	C1	C2	C3	C4	D
ind A	dicator PERE	Unit MJ	B4 0	B5 0	B6 2,50E+01	В7 0	C1 0	C2 1,07E-03	C3 2,77E-04	C4 2,51E-03	D -7,72E-01
î, G	PERE	MJ	0	0	2,50E+01	0	0	1,07E-03	2,77E-04	2,51E-03	-7,72E-01
	PERE PERM	MJ	0 0	0 0	2,50E+01 0,00E+00	0 0	0 0	1,07E-03 0,00E+00	2,77E-04 0,00E+00	2,51E-03 0,00E+00	-7,72E-01 0,00E+00
in the second se	PERE PERM PERT	M) MJ	0 0 0	0 0 0	2,50E+01 0,00E+00 2,50E+01	0 0 0	0 0 0	1,07E-03 0,00E+00 1,07E-03	2,77E-04 0,00E+00 2,77E-04	2,51E-03 0,00E+00 2,51E-03	-7,72E-01 0,00E+00 -7,72E-01
.€. 14 14	PERE PERM PERT PENRE	M) MJ MJ	0 0 0 0	0 0 0 0	2,50E+01 0,00E+00 2,50E+01 2,91E+01	0 0 0 0	0 0 0 0	1,07E-03 0,00E+00 1,07E-03 8,52E-02	2,77E-04 0,00E+00 2,77E-04 9,27E-03	2,51E-03 0,00E+00 2,51E-03 2,55E-02	-7,72E-01 0,00E+00 -7,72E-01 -2,99E-01
	PERE PERM PERT PENRE PENRM	M) MJ MJ MJ	0 0 0 0	0 0 0 0	2,50E+01 0,00E+00 2,50E+01 2,91E+01 0,00E+00	0 0 0 0	0 0 0 0	1,07E-03 0,00E+00 1,07E-03 8,52E-02 0,00E+00	2,77E-04 0,00E+00 2,77E-04 9,27E-03 -3,93E+00	2,51E-03 0,00E+00 2,51E-03 2,55E-02 0,00E+00	-7,72E-01 0,00E+00 -7,72E-01 -2,99E-01 0,00E+00
	PERE PERM PERT PENRE PENRM PENRT	IM IM IM IM IM IM	0 0 0 0 0	0 0 0 0 0 0	2,50E+01 0,00E+00 2,50E+01 2,91E+01 0,00E+00 2,91E+01	0 0 0 0 0	0 0 0 0 0	1,07E-03 0,00E+00 1,07E-03 8,52E-02 0,00E+00 8,52E-02	2,77E-04 0,00E+00 2,77E-04 9,27E-03 -3,93E+00 -3,92E+00	2,51E-03 0,00E+00 2,51E-03 2,55E-02 0,00E+00 2,55E-02	-7,72E-01 0,00E+00 -7,72E-01 -2,99E-01 0,00E+00 -7,88E-01
	PERE PERM PERT PENRE PENRM PENRT SM	MJ MJ MJ MJ MJ Kg	0 0 0 0 0 0 0	0 0 0 0 0 0 0	2,50E+01 0,00E+00 2,50E+01 2,91E+01 0,00E+00 2,91E+01 2,49E-02	0 0 0 0 0 0 0	0 0 0 0 0 0 0	1,07E-03 0,00E+00 1,07E-03 8,52E-02 0,00E+00 8,52E-02 0,00E+00	2,77E-04 0,00E+00 2,77E-04 9,27E-03 -3,93E+00 -3,92E+00 0,00E+00	2,51E-03 0,00E+00 2,51E-03 2,55E-02 0,00E+00 2,55E-02 2,17E-04	-7,72E-01 0,00E+00 -7,72E-01 -2,99E-01 0,00E+00 -7,88E-01 6,10E-03

PERE Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM Use of renewable primary energy resources used as raw materials; PERT Total use of renewable primary energy resources; PENRE Use of non renewable primary energy excluding non-renewable primary energy resources used as raw materials; PERT Total use of non renewable primary energy resources; SM used as raw materials; PENRT Total use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable primary energy resources; SM use of secondary materials; RSF Use of renewable secondary fuels; RSF Use of non renewable secondary fuels; FW Use of net fresh water

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

Prysmian Group

End of life -	Waste										
	Indicator		Unit	A1	A2	A3	A4	A5	B1	B2	B3
ā	HWD		kg	7,30E-03	2,49E-05	1,85E-03	2,05E-05	2,43E-04	0	0	0
Ū	NHW	D	kg	2,75E-01	3,88E-02	3,56E-03	2,72E-02	8,85E-03	0	0	0
2	RWD		kg	3,10E-05	3,13E-06	7,28E-06	2,72E-06	8,87E-07	0	0	0
Inc	licator	Unit	B4	B5	B6	B7	C1	C2	C3	C4	D
ß	HWD	kg	0	0	3,85E-03	0	0	4,67E-06	4,52E-06	2,96E-03	-2,42E-04
Ū	NHWD	kg	0	0	1,78E-01	0	0	7,41E-03	1,51E-04	9,04E-02	-1,27E-02
₽	RWD	kg	0	0	9,17E-05	0	0	5,82E-07	1,93E-08	1,74E-07	-8,01E-07

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed;

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life - O	End of life - Output flow												
Ir	ndicator		Unit	A1	A2	A3	A4	A5	B1	B2	B3		
$\otimes $	Ø ⊳ CRU		kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0	0	0		
\$			kg	2,12E-05	0,00E+00	1,81E-04	0,00E+00	1,28E-03	0	0	0		
DF	М	ER	kg	4,97E-05	0,00E+00	2,33E-05	0,00E+00	1,57E-06	0	0	0		
۶D	EI	EE	MJ	9,24E-05	0,00E+00	4,67E-03	0,00E+00	1,90E-03	0	0	0		
DI	EI	T	MJ	1,40E-03	0,00E+00	7,07E-02	0,00E+00	2,87E-02	0	0	0		
Indica	tor	Unit	B4	B5	B6	B7	C1	C2	C3	C4	D		
$\otimes $	CRU	kg	0	0	0,00E+00	0	0	0,00E+00	0,00E+00	0,00E+00	0,00E+00		
	MFR	kg	0	0	7,57E-03	0	0	0,00E+00	6,36E-02	4,76E-06	-2,39E-04		
DF	MER	kg	0	0	9,25E-03	0	0	0,00E+00	8,17E-08	5,47E-06	-3,14E-05		
۶D	EEE	MJ	0	0	1,59E-03	0	0	0,00E+00	9,01E-02	5,42E-05	-7,70E-05		
DI	EET	MJ	0	0	2,41E-02	0	0	0,00E+00	1,36E+00	8,21E-04	-1,17E-03		

CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported electrical energy; EET = Exported energy Thermal

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

Biogenic Carbon Content										
Indicator	Unit	At the factory gate								
Biogenic carbon content in product	kg C	0,00E+00								
Biogenic carbon content in accompanying packaging	kg C	0,00E+00								

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2

Additional Norwegian requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Data source	Amount	Unit
Electricity, Finland (kWh)	ecoinvent 3.6	255,20	g CO2-eq/kWh

Dangerous substances

The product contains no substances given by the REACH Candidate list or the Danish List of Undesirable Substances.

Indoor environment

Additional Environmental Information

Environmental i	nvironmental impact indicators EN 15804+A1 and NPCR Part A v2.0											
Indicator	Unit		A1	A2	A3	A4	A5	B1	B2	B3		
GWP	kg CO ₂ -eq		9,77E-01	2,94E-02	3,33E-02	2,64E-02	2,42E-02	0	0	0		
ODP	kg CFC11	-eq	5,29E-08	5,53E-09	4,46E-09	4,83E-09	1,36E-09	0	0	0		
POCP	kg C ₂ H ₄ -	eq	2,56E-03	4,40E-06	3,67E-06	7,07E-06	5,15E-05	0	0	0		
AP	kg SO ₂ -	eq	6,45E-02	8,46E-05	7,68E-05	2,14E-04	1,29E-03	0	0	0		
EP	kg PO ₄ ³⁻	-eq	3,24E-03	9,23E-06	1,06E-05	2,34E-05	6,54E-05	0	0	0		
ADPM	kg Sb -e	q	4,32E-04	4,96E-07	1,79E-07	3,86E-07	8,65E-06	0	0	0		
ADPE	MJ		1,46E+01	4,50E-01	6,80E-01	3,90E-01	3,22E-01	0	0	0		
GWPIOBC	kg CO ₂ -	eq	1,02E+00	2,97E-02	2,84E-02	2,67E-02	2,48E-02	0	0	0		
Indicator	Unit	B4	B5	B6	B7	C1	C2	C3	C4	D		
GWP	kg CO ₂ -eq	0	0	3,14E+00	0	0	5,42E-03	1,40E-01	4,81E-03	-2,82E-02		
ODP	kg CFC11 -eq	0	0	8,73E-08	0	0	1,03E-09	9,70E-11	2,69E-10	-1,70E-09		
POCP	kg C ₂ H ₄ -eq	0	0	3,15E-04	0	0	7,07E-07	1,83E-07	9,28E-07	-1,26E-04		
AP	kg SO ₂ -eq	0	0	6,84E-03	0	0	1,09E-05	1,22E-05	3,46E-06	-3,04E-03		
EP	kg PO ₄ ³⁻ -eq	0	0	1,27E-03	0	0	1,19E-06	3,81E-06	3,04E-06	-1,39E-04		
ADPM	kg Sb -eq	0	0	2,00E-05	0	0	9,36E-08	5,01E-09	8,65E-09	-1,97E-05		
ADPE	MJ	0	0	2,91E+01	0	0	8,36E-02	9,27E-03	2,29E-02	-2,82E-01		
GWPIOBC	kg CO ₂ -eq	0	0	3,14E+00	0	0	5,48E-03	1,40E-01	8,27E-04	-1,80E-02		

GWP Global warming potential; ODP Depletion potential of the stratospheric ozone layer; POCP Formation potential of tropospheric photochemical oxidants; AP Acidification potential of land and water; EP Eutrophication potential; ADPM Abiotic depletion potential for non fossil resources; ADPE Abiotic depletion potential for fossil resources; GWP-IOBC/GHG Global warming potential calculated according to the principle of instantanious oxidation (except emissions and uptake of biogenic carbon)

Bibliography

ISO 14025:2010. Environmental labels and declarations - Type III environmental declarations - Principles and procedures. International Organization for Standardization. ISO 14044:2006. Environmental management - Life cycle assessment - Requirements and guidelines. International Organization for Standardization. EN 15804:2012+A2:2019. Environmental product declaration - Core rules for the product category of construction products. European Committee for Standardization.

ISO 21930:2017. Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products. International Organization for Standardization.

EN 50693:2019. Product category rules for life cycle assessments of electronic and electrical products and systems. European Committee for Standardization. Ecoinvent v3, 2019. Allocation, cut-off by classification. Swiss Centre of Life Cycle Inventories.

lversen et al., (2021). eEPD v2021.09, background information for EPD generator tool system verification, LCA.no. Report number: 07.21. System verification report. Philis et al., (2022). EPD generator for NPCR 027 part B for electrical wires and cables, background information for EPD generator application and LCA data, LCA.no Report number: 03.22. PCR verification report.

EPD Norway (2022). NPCR Part A: Construction products and services. The Norwegian EPD foundation. Version 2.0 published 24.03.2021. EPD Norway (2022). NPCR 027 Part B for electrical cables and wires. The Norwegian EPD foundation. Version 2.0 published 01.03.2022.

The operational energy use in module B6 is calculated based on the methodology described in PEP Ecopassport, Product Specific Rules (PSR) for wires, cables and accessories, reference PSR-0001-ed3-EN-2015 10 16.

Clobal Program Operator	Program operator and publisher The Norwegian EPD Foundation Post Box 5250 Majorstuen, 0303 Oslo, Norway	Phone: +47 23 08 80 00 e-mail: post@epd-norge.no web: www.epd-norge.no
Prysmian Group	Owner of the declaration: Prysmian Group Danmark A/S Roskildevej 22, 2620 Albertslund	Phone: +45 60392605 e-mail: per.knudsen@prysmiangroup.com web:
LCA	Author of the Life Cycle Assessment LCA.no AS Dokka 6B, 1671	Phone: +47 916 50 916 e-mail: post@lca.no web: www.lca.no
LCA	Developer of EPD generator LCA.no AS Dokka 6B,1671 Kråkerøy	Phone: +47 916 50 916 e-mail: post@lca.no web: www.lca.no
	ECO Platform ECO Portal	web: www.eco-platform.org web: ECO Portal