

ENVIRONMENTAL PRODUCT DECLARATION

in accordance with ISO 14025, ISO 21930 and EN 15804

Owner of the declaration:	Orica Norway AS
Program operator:	The Norwegian EPD Foundation
Publisher:	The Norwegian EPD Foundation
Declaration number:	NEPD-4020-3055-EN
Registration number:	NEPD-4020-3055-EN
ECO Platform reference number:	-
Issue date:	07.12.2022
Valid to:	07.12.2027

Packaged explosives. EXAN LD50

Orica Norway AS

www.epd-norge.no

	SPRÄNGÄMNE	50
5	SPRENGSTOFF	>0 50
50	1.10	50
50	0082	50
50	Parternancelo	50
50	EXPLOSIVE, BLASTING, TYPE B	50
50	BLANDSPRANGAMME, TYP B CE SpBengstoff, Typi B GB12	50
50		50
50		50
50	Orica Mining Services, Gyttorp, S-713 82 Nora, Sweden, Tel. 0587 85000	50
50	Orica Mining Services, Røykenvelen 18	50
50	NU-3412 Lierstranda, Norway, Tel. 22 31 70 00	50
50	H15H2/Y25/S/10/NL/INTERJUTE/JM198	50
50		50

General information

Product:

Packaged explosives: EXAN LD50

Program operator:

i ne ivorwegian	EPD Foundation
Postboks 5250	Majorstuen, 0303 Oslo
Phone:	+47 23 08 80 00
e-mail:	post@epd-norge.no

Declaration number:

NEPD-4020-3055-EN

ECO Platform reference number:

This declaration is based on Product Category Rules: CEN Standard EN 15804 serves as core PCR NPCR 024 version 1.0 Explosives and Initiation Systems

(03/2016)

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit:

1 kg of manufactured, installed and used (detonated) packaged explosives product

Declared unit with option:

A1-A3, A4, A5

Functional unit:

Verification:

The CEN Norm EN 15804 serves as the core PCR. Independent verification of the declaration and data, according to ISO14025:2010

internal a external

Third party verifier:

Steeldel

Mie Vold, LCA.no AS Independent verifier approved by EPD Norway

Owner of the declaration:

Orica Norway AS Contact person: Phone: e-mail:

Johan Røneid +47 32 22 91 00 johan.roeneid@orica.com

Manufacturer:

Orica Norway AS

Place of production:

Gyttorp, Sweden

Management system:

ISO 9001

Organisation no:

981 413 156

Issue date:

07.12.2022

Valid to:

07.12.2027

Year of study:

LCA conducted in 2022. Production inventory data has been collected in 2021.

Comparability:

EPD of construction products may not be comparable if they do not comply with EN 15804 and are seen in a building context.

The EPD has been worked out by:

Kristine Bjordal Asplan Viak AS

Approved

Håkon Hauan Managing Director of EPD-Norway

2/8

Product

Product description:

These packaged explosive ANFO-products are manufactured at Orica's factory at Gyttorp, Sweden, then transported to the customer via an intermediate storage site. The customer brings the product to the use site and charges the product manually or by use of their own charging equipment into bore holes. The charged bore holes are then detonated.

Product specification:

Energy content of declared products:

	EXAN LD50
Heat of Reaction (MJ/kg)	2,53
Effective Energy (MJ/kg)	1,00

Materials	EXAN LD50
Ammonium Nitrate	60-80%
Destillates (petroleum)	5-<10%
Packaging	
Plastic bag (kg/kg product)	0,007

Technical data:

1 kg explosives product

EU-type examination certificate: EXP 1395-010/2019

Market:

Nordic countries (Norway, Sweden, Finland, Denmark, Iceland)

Reference service life, product:

Not relevant. Explosives cannot be used more than once.

LCA: Calculation rules

Declared unit:

1 kg of manufactured, installed and used (detonated) packaged explosive product

System boundary:

The flow chart for production, transport and use of packaged explosive is shown in the figure below.

Data quality:

Data has been collected in 2021 and is represetative of that year. Data for production, transport and storage of explosives (A1-A3) is based on specific consumption data for the factory at Gyttorp and storage facilities in Norway. Detonation of explosives has been calculated from a balanced chemical reaction, at final state and 1 bar (IDeX code, ideal detonation). Specific producer data on ammonium nitrate production has been used for GWP, while the other impact categories are based on generic data and this may cause a mismatch between GWP and energy use. Generic data is from ecoinvent v3.8, Allocation, Cut-Off by classification (May 2022) SimaPro v 9.1.1.1. Characterization factors from EN15804: 2012 + A1: 2013.

Cut-off criteria:

All major raw materials and all the essential energy is included. The production process for raw materials and energy flows that are included with very small amounts (<1%) are not included. This cut-off rule does not apply for hazardous materials and substances.

Allocation:

The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials allocated to the main product in which the material was used.

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

This declaration is based on a "cradle to gate with options" assessment, including A1-A3: Production at factory, A4: transport from factory to intermediate storage and use site; as well as A5: Manufacture, charging and detonation of explosives at site. The A5 phase is included, as it represents the part of the life cycle in which the explosive is fulfilling its intended function (detonation). The charging of explosives scenario (A5-1) requires no auxiliary materials or substances used in the installation, and only waste treatment of packaging products are included. Detonation of explosives has been calculated from a balanced chemical reaction, at final state and 1 bar (IDeX code, ideal detonation).

The declaration represents pacakaged explosives produced at Gyttorp, Sweden. For the transport of ANFO from the storage to use site (A4), a distance of 70 km has been used, representative of average distance to construction site in Norway. Two alternatives are provided, one where the product is transported by a van and one with a truck.

Transport from factory to intermediate storage site (A4)								
Туре	Capacity utilisation %	Type of vehicle	Fuel/Energy	Value	Distance km			
Truck	100 %	Lorry	l/tkm	0,016	340			

Transport from intermediate storage site to user (A4), alternative 1								
Туре	Capacity utilisation %	tilisation % Type of vehicle Fuel/Energy Value						
Truck	95 %	Van	l/tkm	0,081	70			

Transport from intermediate storage site to other storage locations (A4), alternative 2							
Туре	Capacity utilisation %	Type of vehicle	Fuel/Energy	Value	Distance km		
Truck	95 %	Lorry	l/tkm	0.016	70		

Manufacture and charging of explosives (A5-1)

	Unit	All products
Diesel consumption*	I	0
Packaged explosive consumption	kg	1
Gassing agent consumption	kg	0
Glycol consumption**	kg	0
Water consumption	kg	0

Detonation of explosives (A5-2)

Emissions to air	Unit	EXAN LD50
Carbon	kg	
Methane	kg	0,03185
Carbon dioxide	kg	0,18950
Carbon monoxide	kg	0,00001
Water	kg	0,33960
Nitrogen	kg	0,25650
Silica	kg	0,1800

Theoretical calculations per kg explosive product detonated, from a balanced chemical reaction, at final state and 1 bar (IDeX code, Ideal detonation)

LCA: Results

The LCA results show environmental impacts, resource use and outflows calculated according to EN 15804: 2012 + A1: 2013. The results are per kg packaged explosive, manufactured, charged and detonated at use site. Results are given for all declared product types for A1-A3, A5-1 and A5-2. A4 is similar for both product types. Transport in A4 is 70 km to an average Norwegian construction site.

		anaa			10100			noadio		a o o lai l	,	t inoue		orora			
Pro	duct st	age	Asse	Assemby stage Use stage End of life stage					Use stage						Beyond the system boundaries		
Raw materials	Transport	Manufacturing	Transport	Manufacture and charging	Detonation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery-Recycling- potential
A1	A2	A3	A4	A5-1	A5-2	B1	B2	В3	B4	B5	B6	B7	C1	C2	C3	C4	D
x	x	х	x	x	х	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND

System boundaries (X=included, MND= module not declared, MNR=module not relevant)

Environmental impact

		EXAN LD50									
Parameter	Unit	A1- A3	A4 (alt. 1)	A4 (alt. 2)	A5-1	A5-2					
GWP	kg CO ₂ -eqv	1,07E+00	7,64E-02	3,76E-02	1,63E-02	9,86E-01					
ODP	kg CFC11-eqv	1,77E-07	1,06E-08	5,63E-09	1,78E-09	3,00E+00					
POCP	kg C ₂ H ₄ -eqv	1,66E-04	5,05E-05	8,30E-06	8,11E-07	1,91E-04					
AP	kg SO ₂ -eqv	5,54E-03	6,11E-04	2,01E-04	2,11E-05	3,00E+00					
EP	kg PO ₄ ³⁻ -eqv	1,96E-03	1,26E-04	5,18E-05	3,41E-06	1,08E-01					
ADPM	kg Sb-eqv	2,08E-05	2,38E-06	4,34E-07	3,30E-08	0,00E+00					
ADPE	MJ	2,34E+01	1,20E+00	5,74E-01	8,14E-02	0,00E+00					

GWP Global warming potential; ODP Depletion potential of the stratospheric ozone layer; POCP Formation potential of tropospheric photochemical oxidants; AP Acidification potential of land and water; EP Eutrophication potential; ADPM Abiotic depletion potential for non fossil resources; ADPE Abiotic depletion potential for fossil resources

Resource use

		EXAN LD50				
Parameter	Unit	A1- A3	A4 (alt. 1)	A4 (alt. 2)	A5-1	A5-2
RPEE	MJ	5,51E-01	1,03E-01	5,80E-02	3,00E-03	0,00E+00
RPEM	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
TPE	MJ	5,51E-01	1,03E-01	5,80E-02	3,00E-03	0,00E+00
NRPE	MJ	2,22E+01	1,21E+00	5,66E-01	8,02E-02	0,00E+00
NRPM	MJ	3,71E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
TRPE	MJ	2,59E+01	1,21E+00	5,66E-01	8,02E-02	0,00E+00
SM	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
RSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
NRSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
W	m ³	-5 20F-03	-1 28F-03	-6.03E-04	-8 83F-06	0.00E+00

RPEE Renewable primary energy resources used as energy carrier; RPEM Renewable primary energy resources used as raw materials; TPE Total use of renewable primary energy resources; NRPE Non renewable primary energy resources used as energy carrier; NRPM Non renewable primary energy resources used as materials; TRPE Total use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; W Use of net fresh water

End of life - Waste

		EXAN LD50				
Parameter	Unit	A1- A3	A4 (alt. 1)	A4 (alt. 2)	A5-1	A5-2
HW	kg	4,36E-05	3,55E-05	2,31E-06	2,82E-07	0,00E+00
NHW	kg	1,86E-01	1,16E-01	6,43E-02	3,16E-03	0,00E+00
RW	kg	5,86E-05	6,89E-06	3,20E-06	4,70E-07	0,00E+00

HW Hazardous waste disposed; NHW Non hazardous waste disposed; RW Radioactive waste disposed

End of life - Output flow (INA = Information not available)

		EXAN LD60				
Parameter	Unit	A1- A3	A4 (alt. 1)	A4 (alt. 2)	A5-1	A5-2
CR	kg	INA	INA	INA	INA	INA
MR	kg	INA	INA	INA	INA	INA
MER	kg	INA	INA	INA	INA	INA
EEE	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
ETE	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00

CR Components for reuse; MR Materials for recycling; MER Materials for energy recovery; EEE Exported electric energy; ETE Exported thermal energy

Reading example: $9,0 \text{ E}-03 = 9,0^{*}10^{-3} = 0,009$

Additional Norwegian requirements

Greenhous gas emission from the use of electricity in the manufacturing phase

National production mix from Sweden with import, on medium voltage (included production of transmission lines, in addition to direct emissions and losses in grid) is applied for electricity in the manufacturing prosess (A3). National production mix from Norway is applid for the intermediate storage in A4. The annual production volumes of this market are taken from IEA/OECD statistics and are valid for the year 2018 (ecoinvent 3.8).

Data source	Amount	Unit
Electricity, norwegian production mix, with import, medium voltage, Econinvent v3.8	0,022	kg CO ₂ -eqv/kWh
Electricity, Sweden production mix, with import, medium voltage, Econinvent v3.8	0,044	kg CO2-eqv/kWh

Dangerous substances

- The product contains no substances given by the REACH Candidate list or the Norwegian priority list
- The product contains substances given by the REACH Candidate list or the Norwegian priority list that are less than 0,1 % by weight.
- The product contains dangerous substances, more then 0,1% by weight, given by the REACH Candidate List or the Norwegian Priority list, see table.
- The product contains no substances given by the REACH Candidate list or the Norwegian priority list. The
- product is classified as hazardous waste (Avfallsforskiften, §11-2), see table.

		Amount
Name	CAS no.	EXAN LD50
Ammonium nitrate	6484-52-2	60-80%
Distillates (petroleum)		5-<10%

Indoor environment

Not relevant. No tests have been carried out on the product concerning indoor climate.

Carbon footprint

Carbon footprint has not been worked out for the product.

Bibliography	
ISO 14025:2010	Environmental labels and declarations - Type III environmental declarations - Principles and procedures
ISO 14044:2006	Environmental management - Life cycle assessment - Requirements and guidelines
EN 15804:2012+A1:2013	Sustainability of construction works - Environmental product declaration - Core rules for the product category of construction products
ISO 21930:2007	Sustainability in building construction - Environmental declaration of building products
Ecoinvent v3.8, 2021	Swiss Centre of Life Cycle Inventories. <u>https://www.ecoinvent.org/</u>
SimaPro	LCA software, developed by PRé Sustainability <u>https://simapro.com/</u>
NPCR 024 2016 ver. 1.0	Explosives and Initiation Systems
Bjordal, Kristine, 2022	LCA Report Packed Emulsion Explosives ANFO, Orica Norway AS 17.10.2022

	Program operator	Phone:	+47 23 08 80 00
	The Norwegian EPD Foundation		
	Post Box 5250 Majorstuen, 0303 Oslo	e-mail:	post@epd-norge.no
Global Program Operator	Norway	web	www.epd-norge.no
	Publisher	Phone:	+47 23 08 80 00
@ and_norway	The Norwegian EPD Foundation		
	Post Box 5250 Majorstuen, 0303 Oslo	e-mail:	post@epd-norge.no
Global Program Operator	Norway	web	www.epd-norge.no
	Owner of the declaration	Phone:	+47 32 22 91 00
	Orica Norway AS	Fax	+47 32 22 91 01
NORICA	Røykenveien 18, 3427 Gullaug	e-mail:	nordics@orica.com
	Norway	web	www.oricaminigservices.com
	Author of the Life Cycle Assessment	Phone:	+47 41 79 94 17
	Asplan Viak AS	Fax	
	Kristine Bjordal	e-mail:	<u>asplanviak@asplanviak.no</u>
asplan viak	Abels gate 9, 7030 Trondheim, Norway	web	<u>www.asplanviak.no</u>