

Environmental product declaration

In accordance with ISO 14025 and EN 15804 +A2

weber MS+ Moisture sealer (weber MS+ Kosteussulku)

Owner of the declaration: Saint-Gobain Finland Oy

Declared unit:

1 kg weber MS+ Moisture sealer (weber MS+ Kosteussulku)

This declaration is based on Product Category Rules: CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR 009:2018 Part B for Technical - Chemical products in the building and construction industry

The Norwegian EPD Foundation

Program operator:

The Norwegian EPD Foundation

Declaration number:

NEPD-3970-3009-EN

Registration number:

NEPD-3970-3009-EN

Issue date: 02.12.2022

Valid to: 02.12.2027

EPD Software:

LCA.no EPD generator

System ID: 50304

General information

Product

weber MS+ Moisture sealer (weber MS+ Kosteussulku)

Program operator:

Post Box 5250 Majorstuen, 0303 Oslo, Norway The Norwegian EPD Foundation Phone: +47 23 08 80 00 web: post@epd-norge.no

Declaration number:

NEPD-3970-3009-EN

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR 009:2018 Part B for Technical - Chemical products in the building and construction industry

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit:

1 kg weber MS+ Moisture sealer (weber MS+ Kosteussulku) **Declared unit with option:**

A1-A3,A4,A5,C1,C2,C3,C4,D

Functional unit:

Functional unit is not used because use stage is not considered.

General information on verification of EPD from EPD tools:

Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Individualthird party verification of each EPD is not required when the EPD tool is i) integrated into the company's environmental management system, ii) the procedures for use of the EPD tool are approved by EPDNorway, and iii)the process is reviewed annualy. See Appendix G of EPD-Norway's General Programme Instructions for further information on EPD tools.

Verification of EPD tool:

Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPDNorway's procedures and guidelines for verification and approval of EPD tools.

Third party verifier:

Anne Rønning, Norsus AS (no signature required)

Owner of the declaration:

Saint-Gobain Finland Oy Contact person: Anne Kaiser Phone: +358400289933 e-mail: anne.kaiser@saint-gobain.com

Manufacturer:

Saint-Gobain Finland Oy P.O. Box 70 , Fi-00381 Helsinki Finland

Place of production:

Scanspac Sala Norrängsgatan 35 , 73338 Sala Sweden

Management system:

ISO 9001:2015, ISO 14001:2015 and OHSAS 18001:2007

Organisation no:

FI09515553

Issue date: 02.12.2022

Valid to: 02.12.2027

Year of study:

2021

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

Development and verification of EPD:

The declaration is created using EPD tool lca.tools ver EPD2022.03, developed by LCA.no. The EPD tool is integrated in the company's management system, and has been approved by EPD Norway.

Developer of EPD:

Päivi Pesu

Reviewer of company-specific input data and EPD:

Helene Løvkvist Andersen

Approved:

Håkon Hauan Managing Director of EPD-Norway

Product

Product description:

weber MS+ Moisture sealer is plastic dispersion based waterproofing agent and primer. The product is used in priming and moisture protection on wet room walls, floors and if necessary ceilings before applying weber waterproofing membrane or tiling. Weber Waterproofing work instructions should be followed when waterproofing. MS+ Moisture sealer is part of weberSafe, weberSmart and weberFast waterproofing systems. Not suitable for swimming pools or areas around the pools, unheated spaces or for waterproofing sauna walls or ceilings. Available in 3 L and 10 L cans. GTIN 06415910050214, 06415910050207.

Product specification

The composition of the product is described in the following table. Weight of packaging material is given for 1kg of product.

Materials	
Dispersion	80-100%
Additives	0-10%
Packaging, PE	0,0004kg
Packaging, pallet	0,034kg
Packaging, HDPE	0,03kg

Technical data:

weber MS+ Moisture sealer is part of weberSafe waterproofing system which is certified by Eurofins142/00.

Material consumption: Diluted: approx. 0,1 l/m². Undiluted: approx. 0,2 l/m².

Density: 1,3 kg/l

 $More\ information: www.fi.weber/vedeneristyksen-ratkaisut-ja-tuotteet/nestemaiset-vedeneristeet-ja-epoksit/weber-ms-kosteussulkut-ja-tuotteet/nestemaiset-vedeneristeet-ja-epoksit/weber-ms-kosteussulkut-ja-tuotteet/nestemaiset-vedeneristeet-ja-epoksit/weber-ms-kosteussulkut-ja-tuotteet/nestemaiset-vedeneristeet-ja-epoksit/weber-ms-kosteussulkut-ja-tuotteet/nestemaiset-vedeneristeet-ja-epoksit/weber-ms-kosteussulkut-ja-tuotteet/nestemaiset-vedeneristyksen-ratkaiset-vedeneristyksen-ratkaiset-vedeneristyksen-ratkaiset-vedeneristyksen-ratkaiset-vedeneristyksen-ratkaiset-vedeneristyksen-ratkai$

Market:

Finland and Baltic countries

Reference service life, product

The reference service life of the product is similar to the service life of the building.

Reference service life, building

60 years

LCA: Calculation rules

Declared unit:

1 kg weber MS+ Moisture sealer (weber MS+ Kosteussulku)

Cut-off criteria:

All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

Allocation:

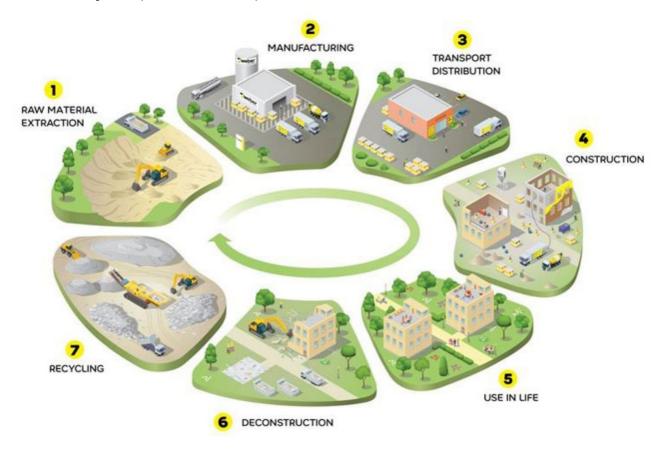
The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

Data quality:

Specific data for the product composition are provided by the manufacturer. The data represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on EPDs according to EN 15804 and different LCA databases. The data quality of the raw materials in A1 is presented in the table below.

Materials	Source	Data quality	Year
Additives	ecoinvent 3.6	Database	2019
Packaging	ecoinvent 3.6	Database	2019

System boundaries (X=included, MND=module not declared, MNR=module not relevant)


ı	Product	stage	insta	ruction llation age		Use stage					End of life stage					Beyond the system boundaries
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De- construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling- potential
A1	A2	A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
X	X	Х	X	Χ	MND	MND	MND	MND	MND	MND	MND	Χ	X	Χ	Χ	X

System boundary:

All processes from raw material extraction to product transport to the building site, assembly as well as end of life stage and phases beyond the system boundary (A1-A5, C1-C4, D) are included in the analysis.

The production process comprises of mixing raw materials together. Ready mixed product is then packed into plastic pails with lid for delivery. Stage B is not considered. At the end-of-life stage the impact of the product in building deconstruction is considered to be minor, therefore no impact is calculated in C1. Default waste scenario from NPCR Part B Technical - Chemical products for building and construction industry is applied. Thus, at end-of-life, 10% of the product is collected for material recycling and 90% is disposed into landfill.

Packaging of most representative product is selected for the study. System boundaries (cradle-to-gate with options) are illustrated in the picture below.

Additional technical information:

The LCA calculation has been made taking into account the fact that during the manufacturing process 100% renewable electricity is used. This 100% renewable electricity bought is evidenced by Guarantee of Origin certificates (GOs) from LOS, valid for the study year (2021) and after.

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

The results of stage A4 (transportation of product) in the table of this EPD refer to transportation in Finland (average distance 2021). This product may also be delivered to the countries in the table "Additional A4 information". In order to adapt the impact of transportation to these countries, A4 figures from this EPD shall be multiplied by the multiplication factors below.

At installation stage, no additional accessory was taken into account. Material loss is considered to be 0.

Due to minor impact in deconstruction phase, C1 is set 0. Transportation distance to waste disposal is assumed to be 30 km. It is assumed that 90% of the product is disposed into landfill and 10% is collected and recycled.

Transport from production place to user (A4)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Ship, Freight, Transoceanic (km)	65,0 %	440	0,003	l/tkm	1,32
Truck, over 32 tonnes, EURO 5 (km)	53,3 %	245	0,023	l/tkm	5,64
Additional A4 information	Unit/Range	Value			
Tallinn, Estonia (truck 317 km / ferry 528 km)	Multiplication factor GWP/A4	1,28			
Riga, Latvia (truck 587 km / ferry 528 km)	Multiplication factor GWP/A4	2,21			
Kaunas, Lithuania (truck 847 km / ferry 528 km)	Multiplication factor GWP/A4	3,11			
Assembly (A5)	Unit	Value			
Waste, plastic packaging, mixture, to average treatment (kg)	kg	0,03			
Waste, wood packaging, average treatment (kg)	kg	0,03			
Transport to waste processing (C2)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, over 32 tonnes, EURO 5 (km)	53,3 %	30	0,023	l/tkm	0,69
Waste processing (C3)	Unit	Value			
Waste treatment of product after demolition (kg)	kg/DU	0,10			
Disposal (C4)	Unit	Value			
Disposal of product in landfill (kg)	kg/DU	0,90			
Benefits and loads beyond the system boundaries (D)	Unit	Value			
Substitution of primary aggregates with crushed recycled inert products (kg)	kg/DU	0,10			

LCA: Results

The LCA results are presented below for the declared unit defined on page 2 of the EPD document.

Enviro	Environmental impact													
	Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D				
	GWP-total	kg CO ₂ -eq	3,39E+00	2,64E-02	3,32E-03	0	2,73E-03	7,20E-05	7,39E-03	-2,34E-04				
	GWP-fossil	kg CO ₂ -eq	3,43E+00	2,64E-02	3,31E-03	0	2,73E-03	7,10E-05	7,38E-03	-2,29E-04				
	GWP-biogenic	kg CO ₂ -eq	-4,43E-02	1,03E-05	4,73E-06	0	1,12E-06	6,13E-07	8,62E-06	-4,57E-06				
	GWP-Iuluc	kg CO ₂ -eq	1,16E-03	9,36E-06	4,17E-07	0	7,96E-07	9,83E-08	1,81E-06	-1,55E-07				
Ö	ODP	kg CFC11 -eq	6,73E-08	6,03E-09	2,89E-10	0	6,30E-10	1,40E-11	2,80E-09	-4,20E-11				
Œ	АР	mol H+ -eq	2,04E-02	2,28E-04	1,02E-05	0	1,15E-05	5,75E-07	6,57E-05	-2,06E-06				
-	EP-FreshWater	kg P -eq	1,55E-05	1,87E-07	1,58E-08	0	2,08E-08	4,49E-09	8,37E-08	-6,09E-09				
-	EP-Marine	kg N -eq	2,60E-03	6,12E-05	5,84E-06	0	3,45E-06	1,68E-07	2,44E-05	-7,15E-07				
*	EP-Terrestial	mol N eq	2,85E-02	6,80E-04	4,41E-05	0	3,81E-05	1,94E-06	2,69E-04	-8,40E-06				
	POCP	kg NMVOC -eq	1,08E-02	1,96E-04	1,21E-05	0	1,23E-05	5,20E-07	7,71E-05	-2,22E-06				
	ADP-minerals&metals ¹	Kg Sb-eq	5,38E-06	4,11E-07	2,75E-08	0	4,66E-08	9,01E-10	6,65E-08	-2,03E-08				
	ADP-fossil ¹	MJ	4,99E+01	3,99E-01	2,06E-02	0	4,24E-02	2,21E-03	2,03E-01	-3,87E-03				
<u>%</u>	WDP ¹	m ³	1,12E+01	2,76E-01	5,15E-02	0	3,25E-02	2,43E-01	1,25E+00	-1,82E-01				

GWP total Global Warming Potential total; GWP fossil Global Warming Potential fossil fuels; GWP biogenic Global Warming Potential biogenic; GWP luluc Global W Potential land use change; ODP Ozone Depletion; AP Acidification; EP freshwater Eutrophication aquatic freshwater; EP marine Eutrophication aquatic marine; EP terrestrial Eutrophication terrestrial; POCP Photochemical zone formation; ADPE Abiotic Depletion Potential minerals and metals; ADPf Abiotic Depletion Potential fossil fuels; WDP Water Depletion Potential

Remarks to environmental impacts

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009"

^{*}INA Indicator Not Assessed

^{1.} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator.

Addition	Additional environmental impact indicators											
Pai	rameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D		
	PM	Disease incidence	4,37E-07	1,96E-09	1,43E-10	0	2,40E-10	9,00E-12	1,40E-09	-4,40E-11		
	IRP ²	kgBq U235 eq.	1,91E-02	1,74E-03	8,34E-05	0	1,85E-04	3,70E-05	9,27E-04	-3,55E-05		
	ETP-fw ¹	CTUe	9,19E+01	2,84E-01	2,16E-02	0	3,10E-02	1,56E-03	1,11E-01	-3,99E-03		
48.* **** <u>*</u>	HTP-c ¹	CTUh	2,03E-08	0,00E+00	1,00E-12	0	0,00E+00	0,00E+00	5,00E-12	0,00E+00		
& <u>B</u>	HTP-nc ¹	CTUh	8,67E-08	2,45E-10	7,40E-11	0	3,00E-11	1,00E-12	8,00E-11	-5,00E-12		
	SQP ¹	Pt	9,49E+00	4,04E-01	2,33E-02	0	4,86E-02	1,25E-03	7,82E-01	8,79E-03		

PM Particulate Matter emissions; IRP Ionizing radiation – human health; ETP-fw Eco toxicity – freshwater; HTP-c Human toxicity – cancer effects; HTP-nc Human toxicity – non cancer effects; SQP Soil Quality (dimensionless)

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

^{1.} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

^{2.} This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

Resource use												
	rameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D		
	PERE	MJ	1,71E+00	4,72E-03	4,69E-04	0	5,34E-04	1,14E-03	7,27E-03	-9,07E-04		
	PERM	МЈ	4,66E-01	0,00E+00	0,00E+00	0	0,00E+00	0,00E+00	0,00E+00	0,00E+00		
°₽3	PERT	МЈ	2,18E+00	4,72E-03	4,69E-04	0	5,34E-04	1,14E-03	7,27E-03	-9,07E-04		
	PENRE	МЈ	4,86E+01	3,99E-01	2,06E-02	0	4,24E-02	2,21E-03	2,03E-01	-4,09E-03		
PÅ.	PENRM	МЈ	1,29E+00	0,00E+00	0,00E+00	0	0,00E+00	0,00E+00	0,00E+00	0,00E+00		
I	PENRT	МЈ	4,99E+01	3,99E-01	2,06E-02	0	4,24E-02	2,21E-03	2,03E-01	-4,09E-03		
	SM	kg	1,80E-03	0,00E+00	1,01E-05	0	0,00E+00	1,90E-06	8,81E-05	-7,83E-06		
2	RSF	МЈ	4,20E-02	1,61E-04	1,29E-05	0	1,87E-05	2,30E-05	1,51E-04	-1,85E-05		
	NRSF	МЈ	5,84E-03	6,32E-04	8,97E-05	0	6,26E-05	-1,42E-06	3,26E-04	-1,91E-05		
<u>%</u>	FW	m^3	3,62E-02	4,22E-05	1,30E-05	0	4,83E-06	3,78E-06	2,50E-04	-1,42E-04		

PERE Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM Use of renewable primary energy resources used as raw materials; PERT Total use of renewable primary energy resources; PENRE Use of non renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM Use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; FW Use of net fresh water

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life - Was	End of life - Waste												
Par	ameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D			
ā	HWD	kg	9,01E-03	2,12E-05	3,51E-04	0	2,32E-06	2,20E-07	1,43E-05	-9,34E-07			
Ū	NHWD	kg	5,03E-01	3,02E-02	1,56E-02	0	3,69E-03	6,96E-06	9,01E-01	-2,83E-05			
8	RWD	kg	2,63E-05	2,73E-06	1,25E-07	0	2,90E-07	2,33E-08	1,32E-06	-3,07E-08			

HWD Hazardous waste disposed; NHWDNon-hazardous waste disposed; RWD Radioactive waste disposed;

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life - Outpu	End of life - Output flow											
Parame	ter	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D		
@▷	CRU	kg	0,00E+00	0,00E+00	0,00E+00	0	0,00E+00	0,00E+00	0,00E+00	0,00E+00		
\$>>	MFR	kg	2,70E-03	0,00E+00	1,55E-02	0	0,00E+00	1,00E-01	8,03E-05	-1,83E-07		
DF	MER	kg	4,12E-04	0,00E+00	1,39E-07	0	0,00E+00	2,30E-07	1,51E-06	-6,86E-06		
50	EEE	MJ	2,09E-02	0,00E+00	2,36E-02	0	0,00E+00	3,95E-07	1,25E-04	-1,66E-06		
₽	EET	MJ	3,16E-01	0,00E+00	3,56E-01	0	0,00E+00	5,97E-06	1,89E-03	-2,50E-05		

CRU Components for re-use; MFR Materials for recycling; MER Materials for energy recovery; EEE Exported electrical energy; EET Exported energy Thermal

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

Biogenic Carbon Content										
Parameter	Unit	At the factory gate								
Biogenic carbon content in product	kg C	0,00E+00								
Biogenic carbon content in accompanying packaging	kg C	1,39E-02								

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2

Additional Norwegian requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Data source	Amount	Unit
Renewable electricity Saint-Gobain, based on 100% hydro power, with Guarantee of Origin from LOS 2021 (kWh)	ecoinvent 3.6	4,26	g CO2-eq/kWh

Dangerous substances

The product contains no substances given by the REACH Candidate list or the Norwegian priority list.

Indoor environment

weber MS+ Moisture sealer has M1 indoor air emission classification granted by The Finnish Building Information Foundation RTS (https://cer.rts.fi/en/m1-emission-class-for-building-material/).

Additional Environmental Information

Environmental impact	nvironmental impact indicators EN 15804+A1 and NPCR Part A v2.0											
Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D			
GWP	kg CO ₂ -eq	3,24E+00	2,61E-02	2,87E-03	0	2,70E-03	7,00E-05	7,23E-03	-2,45E-04			
ODP	kg CFC11 -eq	5,82E-08	5,05E-09	2,34E-10	0	5,10E-10	1,70E-11	2,25E-09	-3,80E-11			
POCP	kg C ₂ H ₄ -eq	9,67E-04	5,68E-06	4,95E-07	0	3,52E-07	1,56E-08	1,70E-06	-5,11E-08			
AP	kg SO ₂ -eq	1,72E-02	1,52E-04	5,86E-06	0	5,44E-06	2,63E-07	2,01E-05	-5,99E-07			
EP	kg PO ₄ ³eq	9,10E-04	1,64E-05	2,31E-06	0	5,94E-07	3,48E-08	2,37E-06	-7,02E-08			
ADPM	kg Sb -eq	5,37E-06	4,11E-07	2,75E-08	0	4,66E-08	9,01E-10	6,65E-08	-2,03E-08			
ADPE	MJ	4,09E+01	3,92E-01	2,00E-02	0	4,16E-02	8,47E-04	1,95E-01	-3,87E-03			
GWPIOBC	kg CO ₂ -eq	2,14E-01	2,64E-02	0,00E+00	0	2,73E-03	0,00E+00	0,00E+00	-2,45E-04			

GWP Global warming potential; ODP Depletion potential of the stratospheric ozone layer; POCP Formation potential of tropospheric photochemical oxidants; AP Acidification potential of land and water; EP Eutrophication potential; ADPM Abiotic depletion potential for non fossil resources; ADPE Abiotic depletion potential for fossil resources; GWP-IOBC/GHG Global warming potential calculated according to the principle of instantanious oxidation (except emissions and uptake of biogenic carbon)

Bibliography

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures.

ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines.

EN 15804:2012+A2:2019 Environmental product declaration - Core rules for the product category of construction products.

ISO 21930:2017 Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products.

ecoinvent v3, Allocation, cut-off by classification, Swiss Centre of Life Cycle Inventories.

Iversen et al., (2021) eEPD v2021.09 Background information for EPD generator tool system verification, LCA.no Report number: 07.21

Iversen et al., (2019) EPD generator for Saint-Gobain Weber and Scanspac - Background information and LCA data, LCA.no report number 05.18

Iversen et al., (2020) EPD generator for Saint-Gobain Weber Nordics and Scanspac Background information for customer application,

and LCA data – Supplementary report for modules A5, C and D, LCA.no report number 04.20 NPCR Part A: Construction products and services. Ver. 2.0, 24.03.2021 EPD Norway.

NPCR 009 Part B for technical-chemical products. Ver. 2.0 October 2021, EPD-Norge.

© epd-norway	Program operator and publisher	Phone:	+47 23 08 80 00
-	The Norwegian EPD Foundation	e-mail:	post@epd-norge.no
Global Program Operator	Post Box 5250 Majorstuen, 0303 Oslo, Norway	web:	www.epd-norge.no
	Owner of the declaration:	Phone:	+358400289933
Sweber SAINT-GOBAIN	Saint-Gobain Finland Oy	e-mail:	anne.kaiser@saint- gobain.com
	P.O. Box 70, Fi-00381 Helsinki	web:	www.saint-gobain.fi
	Author of the Life Cycle Assessment	Phone:	+47 916 50 916
(LCA)	LCA.no AS	e-mail:	post@lca.no
.no	Dokka 6B, 1671	web:	www.lca.no
	Developer of EPD generator	Phone:	+47 916 50 916
(LCA)	LCA.no AS	e-mail:	post@lca.no
,no	Dokka 6B,1671 Kråkerøy	web:	www.lca.no
ECO PLATFORM	ECO Platform	Web:	www.eco-platform.org
VERIFIED	ECO Portal	Web:	ECO Portal

EPD for the best environmental decision

The Norwegian EPD Foundation www.epd-norge.no

