

ENVIRONMENTAL PRODUCT DECLARATION

in accordance with ISO 14025, ISO 21930 and EN 15804

Owner of the declaration:
Program operator:
Publisher:
Declaration number:

Registration number:

ECO Platform reference number:

Issue date: Valid to: lokk AS

The Norwegian EPD Foundation

The Norwegian EPD Foundation

NEPD-3732-2680-EN

NEPD-3732-2680-EN

-

21.09.2022

21.09.2027

OFFECCT Nomole, Bar stool

Flokk AS

Flol: I:

www.epd-norge.no

OFFECCT

General information

Product:

OFFECCT Nomole, Bar stool

Owner of the declaration:

Flokk AS

Contact person: Atle Thiis-Messel Phone: 0047 98 25 68 30 e-mail: atle.messel@flokk.com

Program operator:

The Norwegian EPD Foundation Pb. 5250 Majorstuen, 0303 Oslo Phone: +47 23 08 80 00 e-mail: post@epd-norge.no

ECO Platform reference number:

Manufacturer:

Flokk AS Drammensveien 145, 0277 Oslo

Norway

Declaration number:

NEPD-3732-2680-EN

Place of production:

Flokk - Turek

ul. Górnicza 8 62-700 Turek

Poland

Management system:

ISO 14001, ISO 9001, ISO 50001(Norway, Sweden)

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A1:2013 serves as core PCR NPCR 026:2018 Part B for furniture

Organisation no:

No 928 902 749

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Issue date: 21.09.2022

Valid to: 21.09.2027

Declared unit:

1 Pcs OFFECCT Nomole, Bar stool

Year of study:

Declared unit with option:

A1,A2,A3,A4

Comparability:

EPDs from programmes other than the Norwegian EPD Foundation may not be comparable

Functional unit:

Development and verification of EPD:

The declaration has been developed and verified using EPD tool lca.tools ver EPD2020.11, developed by LCA.no AS. The EPD tool is integrated into the company's environmental management system, and has been approved by EPD-Norway

General information on verification of EPD from EPD tools:

Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Individual third party verification of each EPD is not required when the EPD tool is i) integrated into the company's environmental management system, ii) the procedures for use of the EPD tool are approved by EPDNorway, and iii) the process is reviewed annualy. See Appendix G of EPD-Norway's General Programme Instructions for further information on EPD tools.

Developer of EPD:

Damian Bakowski

Reviewer of company-specific input data and EPD:

Arleta Derdziak

Verification of EPD tool:

Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPDNorway's procedures and guidelines for verification and approval of EPD tools.

Approved:

Sign

Erik Svanes, Norsus AS

(no signature required)

Håkon Hauan, CEO EPD-Norge

Key environmental indicators	Unit	Cradle to gate A1 - A3
Global warming	kg CO2 eqv	36,46
Total energy use	MJ	585,38
Amount of recycled materials	%	17,10

Product

Market:

Wordwide

Product description:

A stripped-down graphic and playful bar stool with backrest and a slight swing – no more, no less. Ronja Reuber's Nomole, designed for Offecct Sweden, is both minimalistic and comfortable with low material use and easy updating to make it long-term sustainable.

Nomole started out as a graduation project at Beckman's College of Design, based on the question: What is the essence of a piece of furniture? The result is a minimalistic bar stool with graphic precision, distinctive lines and a monochrome colour scheme, clearly founded on the belief that form, function and sustainability go hand in hand.

The steel pipe construction has a slight swing that makes sitting more active and the integrated backrest provides comfortable support, regardless of whether the stool is used in a restaurant, an office meeting area or a home environment.

Product specification

Frame: Matt texture powder painted metal, RAL9005 SURCHARGE: RAL flexicolor (Surcharge: 7FLEC – Frame in flexi). Upholstery material Fabric from price list – same type and colour of fabric on seat and back Glides: Hard as a standard. Felt as an option.

Technical data:

https://www.offecct.com/product/nomole

Reference service life, product

5 years

Reference service life, building

Materials	kg	%	Recycled share in material (kg)	Recycled share in material (%)
Metal - Steel	6,44	42,49	1,28	19,88
Textile - Polyester (PE)	0,27	1,77	0,21	78,87
Plastic - Polyurethane (PUR)	0,45	2,97	0,00	0,00
Plastic - Polypropylene (PP)	0,02	0,10	0,00	0,00
Wood - Plywood	1,37	9,03	0,00	0,00
Powder coating	0,10	0,63	0,00	0,00
Glue	0,12	0,79	0,00	3,03
Total:	8,77		1,50	

LCA: Calculation rules

Declared unit:

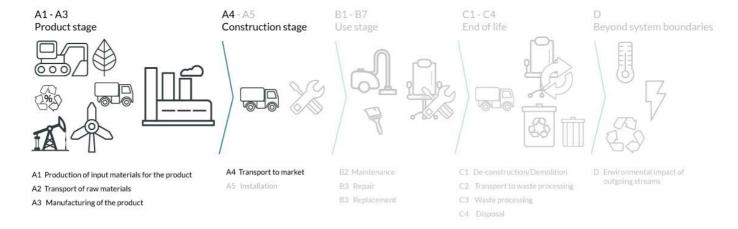
1 Pcs OFFECCT Nomole, Bar stool

Cut-off criteria:

All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

Allocation:

The allocation is made in accordance with the provisions of EN 15804. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.


Data quality:

Specific data for the product composition are provided by the manufacturer. They represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on registered EPDs according to EN 15804, Ostfold Research databases, ecoinvent and other LCA databases. The data quality of the raw materials in A1 is presented in the table below.

Materials	Source	Data quality	Year
Plastic - Polypropylene (PP)	ecoinvent 3.4	Database	2015
Plastic - Polyurethane (PUR)	ecoinvent 3.4	Database	2015
Metal - Steel	ecoinvent 3.3	Database	2016
Metal - Steel	ecoinvent 3.4	Database	2017
Textile - Polyester (PE)	ecoinvent 3.4	Database	2017
Wood - Plywood	ecoinvent 3.4	Database	2017
Powder coating	ecoinvent 3.5	Database	2018
Process	ecoinvent 3.6	Database	2019
Glue	Modified ecoinvent 3.6	Database and supplier	2019

System boundary:

Additional technical information:

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Transport from production place to user (A4)

Туре	Capacity utilisation (incl. return) %	Type of vehicle	Distance km	Fuel/Energy consumption	Unit	Value (I/t)
Truck	38,8 %	Truck, 16-32 tonnes, EURO 5	1000	0,044606	l/tkm	44,61
Railway					l/tkm	
Boat					l/tkm	
Other Transportation					l/tkm	

	nbly	

	Unit	Value
Auxiliary	kg	
Water consumption	m ³	
Electricity consumption	kWh	
Other energy carriers	MJ	
Material loss	kg	
Output materials fr ste treatment	kg	
Dust in the air	kg	
VOC emissions	kg	

Maintenance (B2)/Repair (B3)

maintenance (BZ)/Repair (B3)		
	Unit	Value
Maintenance cycle*	OCO.	
Auxiliary	char.	
Other resources	4/10	•
Water consumption	Scenario,	3. 9k
Electricity consumption	kWh	.16
Other energy carriers	MJ	
Material loss	kg	
VOC emissions	kg	

Operational energy (B6) and water consumption (B7)

	Unit	Value
Water consumption	m ³	
Electricity consumption	kWh	
Other energy carriers	MJ	
Power output of equipment	kW	

Use (B1)

•	Unit	Value

Replacement (B4)/Refurbishment (B5)

	Unit	Value
Replacement cycle*		
Electricity consumption	kWh	
Replacement of worn parts		

* Described above if relevant

	* Described above if relevant	•	
	Described above if relevant		
a?			
e.	~ A		
	47		
\neg	'%'.		
_	79		
	dr		
	End of Life (C1.)		
	Lind of Line (o1, o		
е	1701	Unit	Value
	Hazardous waste disposed	kg	
-	Collected as mixed construction w	-	
	Collected as mixed construction was	kg	
\neg		l	
-	Reuse	kg	
	Reuse	*q	
	Recycling	- P	
	Recycling Energy recovery	49_	
	* Described above if relevant A 7. A A B P P P P P P P P P P P P P P P P P	kg _	

Transport to waste processing (C2)

Туре	Capacity utilisation (incl. return) %	Type of vehicle	Distance km	Fuel/Energy consumption	Unit	Value (I/t)
Truck					I/tkm	
Railway					I/tkm	
Boat					I/tkm	
Other Transportation					I/tkm	

LCA: Results

The LCA results are presented below for the declared unit defined on page 2 of the EPD document.

System boundaries (X=included, MND=module not declared, MNR=module not relevant)

Pr	oduct sta	age	instal	ruction lation age	User stage			End of life stage			•	Beyond the system bondaries				
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De- construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling- potential
A1	A2	A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	. D
Х	Х	Х	Х	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	. MND

Environmental impact

Parameter	Unit	A1	A2	A3	A4
GWP	kg CO ₂ -eq	2,93E+01	1,06E+00	6,12E+00	1,43E+00
ODP	kg CFC11 -eq	2,01E-06	1,98E-07	1,58E-07	2,63E-07
POCP	kg C ₂ H ₄ -eq	1,33E-02	1,71E-04	1,39E-03	2,32E-04
AP	kg SO ₂ -eq	1,25E-01	4,06E-03	3,68E-02	4,55E-03
EP	kg PO ₄ ³⁻ -eq	2,57E-02	7,34E-04	4,47E-03	7,54E-04
ADPM	kg Sb -eq	2,04E-04	2,12E-06	3,39E-07	4,35E-06
ADPE	MJ	3,21E+02	1,61E+01	6,23E+01	2,15E+01

GWP Global warming potential; ODP Depletion potential of the stratospheric ozone layer, POCP Formation potential of tropospheric photochemical oxidants; AP Acidification potential of land and water, EP Eutrophication potential; ADPM Abiotic depletion potential for non fossil resources; ADPE Abiotic depletion potential for fossil resources

Reading example: $9.0 \text{ E}-03 = 9.0*10-3 = 0.009}$ *INA Indicator Not Assessed

Resource use

Parameter	Unit	A1	A2	A3	A4
RPEE	MJ	1,05E+02	2,98E-01	7,31E+00	3,13E-01
RPEM	MJ	4,45E+01	0,00E+00	0,00E+00	0,00E+00
TPE	MJ	1,50E+02	2,98E-01	7,31E+00	3,13E-01
NRPE	MJ	3,90E+02	1,66E+01	6,58E+01	2,20E+01
NRPM	MJ	8,36E+00	0,00E+00	0,00E+00	0,00E+00
TRPE	MJ	3,98E+02	1,66E+01	6,58E+01	2,20E+01
SM	kg	1,50E+00	0,00E+00	0,00E+00	0,00E+00
RSF	MJ	1,78E-03	0,00E+00	0,00E+00	0,00E+00
NRSF	MJ	4,62E-04	0,00E+00	0,00E+00	0,00E+00
W	m ³	3,30E-01	3,90E-03	3,28E-02	4,12E-03

RPEE Renewable primary energy resources used as energy carrier; RPEM Renewable primary energy resources used as raw materials; TPE Total use of renewable primary energy resources; NRPE Non renewable primary energy resources used as materials; TRPE Total use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; NRSF Use of non renewable secondary fuels; W Use of net fresh water

Reading example: 9,0 E-03 = 9,0*10-3 = 0,009

*INA Indicator Not Assessed

End of life - Waste

Parameter	Unit	A1	A2	A3	A4
HW	kg	1,94E-03	9,37E-06	3,14E-02	1,28E-05
NHW	kg	2,57E+01	1,34E+00	2,28E+00	1,16E+00
RW	kg	INA*	INA*	INA*	INA*

HW Hazardous waste disposed; NHW Non hazardous waste disposed; RW Radioactive waste disposed

Reading example: 9.0 E-03 = 9.0*10-3 = 0.009

*INA Indicator Not Assessed

End of life - Output flow

Parameter	Unit	A1	A2	A3	A4
CR	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00
MR	kg	0,00E+00	0,00E+00	7,67E-01	0,00E+00
MER	kg	0,00E+00	0,00E+00	4,70E-03	0,00E+00
EEE	MJ	INA*	INA*	INA*	INA*
ETE	MJ	INA*	INA*	INA*	INA*

CR Components for reuse; MR Materials for recycling; MER Materials for energy recovery; EEE Exported electric energy; ETE Exported thermal energy

Reading example: 9.0 E-03 = 9.0*10-3 = 0.009

*INA Indicator Not Assessed

Additional Norwegian requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Data source	Amount	Unit
Energy, electricity, Poland: 1 kWh	ecoinvent 3.6	1099,70	g CO2-ekv/kWh

Dangerous substances

The product contains no substances given by the REACH Candidate list or the Norwegian priority list.

Indoor environment

Additional environmental information

Key environmental indicators for variants for this EPD: Cradle to Gate analyse from A1 to A3

Variant number	Global warming (kg CO2)	Total energy use (MJ)	Share of recycled material in product(%)
OFFECCT Nomole Low	36,46	585,38	17,03
OFFECCT Nomole High	38,40	612,34	17,17

Key environmental indicators for options for this EPD: Cradle to Gate analyse from A1 to A3 $\,$

Option number	Global warming (kg CO2)	Total energy use (MJ)	Share of recycled material in product(%)
OFFECCT Nomole Packaging	3,44	44,67	97,70

Bibliography

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures.

ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines.

EN 15804:2012+A1:2013 Environmental product declaration - Core rules for the product category of construction products.

ISO 21930:2017 Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products.

ecoinvent v3, Allocation, cut-off by classification, Swiss Centre of Life Cycle Inventories.

 $Iversen\ et\ al., (2018)\ eEPD\ v3.0-Background\ information\ for\ EPD\ generator\ system.\ LCA. no\ report\ number\ 04.18$

 $Vold\ et\ al.,\ (2019)\ EPD\ generator\ for\ Norsk\ Industri,\ Background\ information\ for\ industry\ application\ and\ LCA\ data,\ LCA. no\ report\ number\ 06.19.$

NPCR Part A: Construction products and services. Ver. 1.0. April 2017, EPD-Norge.

NPCR 026 Part B for Furniture. Ver. 2.0 October 2018, EPD-Norge.

© epd-norway	Program operator and publisher The Norwegian EPD Foundation Post Box 5250 Majorstuen, 0303 Oslo,Norway	Phone: e-mail: web:	+47 23 08 80 00 post@epd-norge.no www.epd-norge.no
lilol:l:	Owner of the declaration Flokk AS Drammensveien 145, 0277 Oslo	Phone: e-mail: web:	0047 98 25 68 30 atle.messel@flokk.com https://www.flokk.com
LCA,	Author of the Life Cycle Assessment	Phone:	+47 916 50 916
	LCA.no AS	e-mail:	post@lca.no
	Dokka 6B 1671 Kråkerøy	web:	www.lca.no
LCA	Developer of EPD generator	Phone:	+47 916 50 916
	LCA.no AS	e-mail:	post@lca.no
	Dokka 1C 1671 Kråkerøy	web:	www.lca.no