

Environmental Product Declaration

In accordance with ISO 14025 and EN 15804 +A1

The Norwegian EPD Foundation

Owner of the declaration: SCA Wood Scandinavia AB

Program holder and publisher: The Norwegian EPD foundation

Declaration number: NEPD-3643-2588-EN

Registration Number: NEPD-3643-2588-EN

Issue date: 20.07.2022 **Valid to:** 20.07.2027

Roof board from planed spruce

SCA Wood Scandinavia AB Skepparplatsen 1

851 88 Sundsvall

Sweden

General information

Product:

Roof board made from planed timber of Spruce

Program Operator:

The Norwegian EPD Foudation

Post Box 5250 Majorstuen, 0303 Oslo, Norway

Tlf: +47 23 08 80 00 e-mail: post@epd-norge.no

Declaration Number:

NEPD-3643-2588-EN

This declaration is based on Product Category Rules:

EN 15804 A1 (Core PCR) NPCR 015 v3.0 EN16485

Statements:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer, life cycle assessment data and evidences.

Declared unit:

Production of $1m^2$ roof board made from planed dried timber

Declared unit with option:

--

Functional unit:

1m² roof board made from planed dried timber

Verification:

Independent verification of the declaration and data, according to ISO14025:2010

internal \square external \boxtimes

Martin Erlandsson, IVL

Independent verifier approved by EPD Norway

Owner of the declaration:

SCA Wood Scandinavia AB

Contact person: Anders Petersson
Phone: +46 60 19 30 00
e-mail: info@sca.com

Manufacturer:

SCA Wood Scandinavia AB

Skepparplatsen 1, 851 88 Sundsvall, Sweden Phone: +46 60 19 30 00 e-mail: info@sca.com

Place of production:

This EPD is valid for the following production units located in Sweden:

SCA Wood Building & Supply Scandinavia; Tunadal.

Management system:

ISO 14001 Certificate No: 2000-SKM-AE295 FSC Certificate No: SGSCH-COC-050156,

SGCCH-CW-050156

FSC Certificate No: DNV-COC-001780 PEFC Certificate No: DE17/819943523 PEFC certificate: 2019-SKM-PEFC-303

Organisation no:

556302-0667

Issue date:

20.07.2022

Valid to:

20.07.2027

Year of study:

2019

Comparability:

EPDs for other construction products may not be comparable if not in compliance with EN 15804 and EN 16485 and seen in a builiding context.

The EPD has been worked out by:

Eva Lindström, SCA R&D Centre

Approved:

Haken Havay

Håkon Hauan

Manager of EPD Norway

Product

Product description:

Roof boards produced from planed dried timber from spruce. Roof boards are made in two dimensions

- 540 x 3600 x 20 mm
- 540 x 3600 x 23 mm

The data in this EPD represent an average for these two products (including sawing and planing processes).

Product specification:

Densities of wood products varies depending on raw material species, moisture content etc. The calculations for this EPD is based on a density of 469 kg/m^3 for spruce with an average moisture content of 16% and a recalculation factor of $46.5 \text{ m}^2/\text{m}^3$ for the average roof board dimension.

Materials	KG	%
Wood dry weight; spruce	8.5	84%
Water content; spruce	1.6	16%
Total product; roof board from planed spruce	10.1	100%
Metal staples	0.03	0.3%
Plastic packaging	0.02	0.2%
Total with packaging	10.15	

Technical data:

Densities of varies depending on species, moisture content etc. The moisture content of planed wood products varies between 8-18% The calculations for this EPD is based on an average moisture content of 16% and the following densities:

Roof board made from planed dried timber of spruce: $469 \ kg/m^3 \\ 10.1 \ kg/m^2$

Market:

Main markets are Europe, Asia and North Africa

Reference service life, product:

The service life is euqal to the construction element which it is part of and is typically set to at least 50 - 60 years

Reference service life, building:

Not included since this is a raw material.

LCA: Calculation rules

Declared unit:

1m² packed roof boards.

System boundary:

A flowchart showing the system boundary for the production of roof boards is shown below.

Flowchart Roof board Α1 Extraction/manufacturing of Extraction/manufacturing Upstream production packaging materials & metals of fuels operations processes A2 Transport to Truck , Rail, Boat saw mill Sawing Sorting Debarking **Process Waste** Drying **Packaging** А3 Manufacturing **Planing** Roof board production Packaging Process Waste Transport to Truck , Rail, Boat construction site A5 Construction and Installation process Construction & Installation C1-C4 Demolition Transport to waste handling Waste processing End-of-Life D Resource saving Material substitution when recovered potential

Data quality:

Primary production data is collected from SCAs saw mills and three planing mills including roof board production in one site. Data for forestry operations are based on EcoInvent 3.6 data but modified with updated CO₂ data for Swedish Forestry published by Ågren et.al (2021).

All other upstream data and data for production waste treatment is from EcoInvent v.3.6. and GaBi 10.0.0.7 database (Sphera solutions)

GaBi Software System and databases for lifecycle engineering version 10.0.07 from Sphera Soultions has been utilised for modelling and calculations.

Allocation:

Environmental impact from forestry operations is allocated to the roundwood only and nothing to forestry residues such as branches and tops.

The production of of sawn timber results in a number of valuable by-products i.e. raw wood chips used for cellulose pulp production as well as saw dust, bark and dry wood chops sold externally for use as biofuels.

Allocation of the environmental impact from the saw mill and planing mill processes has been allocated between sawn timber and by-products based on economic revenue in accordance with EN15804.

The environmental impact from forestry operations including transport of round wood to the saw mills has been allocated between by-products and sawn timber based on the physical realtionship between them i.e. on a dry weight basis in accordance with EN 15804 and EN 16485. No allocation to by-procuts from the planing process have been made.

Cut-off criteria:

All major raw materials and energy flows are included. The production processe for raw materials and energy flows that represent a very small amount (<1%) is not included. This cut-off rule does not apply to hazardous materials and dangerous substances.

Calculation of biogenic carbon content

Sequestration and emissions of biogenic carbon dioxide is calculated according to EN 16485:2014 where the net biogeninc carbon is zero i.e. carbon dioxide neutral. Carbon neutrality is assumed for the wooden packaging used.

The content of biogenic carbon stored in the product is calculated and reported in accordance with EN 15804 and EN 16485 using an average dry density for planed wood of 394 kg/m³. This gives a biogenic carbon content in roof boards of 197 kg $C/m^3 = 4,23$ kg C/m^2 corresponding to a storage of 722 kg $CO_2/m^3 = 15.5$ kg CO_2/m^2

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Transport from production place to assembly/user (A4)

Туре	Capacity utilisation (incl. return) %	Type of vehicle	Distance KM	Fuel/Energy consumption	value (l/t)
Truck	45% (90%+0%)	TT/AT 28-34 +	100	0.027 l/tonkm	2.7

The transport distance is reported as 100 km and shall be used as a factor to estimate the impact for the actual distance to a specific location. The truck for delivering wood products to construction site is assumed to return empty.

Assembly (A5)

	Unit	Value
Electricity consumption; crane	kWh	6.33 E-04
Diesel; front loader	kWh	5.86 E-03
Material loss	%	5

4 minutes of work with a front loader at the construction site (Erlandsson 2013) and $\,$ an average lift with crane (Lundström 2016) is assumed . For material loss at the constrution site an assumption of 5% is used.

Use (B1)

	Unit	Value
MND		

Maintenance (B2)/Repair (B3)

	Unit	Value
MND		

Replacement (B4)/Refurbishment (B5)

	Unit	Value
MND		

Operational energy (B6) and water consumption (B7)

	Unit	Value
MND	m3	

End of Life (C1, C3, C4)

	Unit	Value
C1 Demolition machine (diesel)	kWh	1.1 E-02
C3: Reuse	Kg	0
C3: Recycling	Kg	0
C3: Energy recovery	Kg	10.1
C3: Diesel for chipping machine	kWh	6.1 E-02
To landfill	Kg	0

Energy consumption for demolition (C1) and chipping of discarded wood (C3) before energy recovery. 100% energy recovery is assumed at end of life.

Transport to waste processing (C2)

Туре	Capacity utilisation (incl. return) %	Type of vehicle	Distance KM	Fuel/Energy consumption	value (l/t)
Truck	45% (90%+0%)	Large lorry/truck	35	0.037 l/tonkm	1.3

Assumed transport to local waste treatment site from where it is sold as fuel for energy generation. The truck for transporting waste is assumed to return empty

Benefits and loads beyond the system boundaries (D)

	Unit	Value
Discarded products substituting average fuel mix in district heating	MJ	163

The discarded wood is chipped and assumed to be used as fuels in district heating and replacing the average fuel mix.

If the recycling rate is less than 100% the results from module C and D shall be recalculated to reflect the actual recycling rate. 100% is used to enable a modular approach when using these figures at building level.

Additional technical information

No additional technical information is given

LCA: Results

System boundaries (X=included, MND= module not declared, MNR=module not relevant)

Pro	Product stage		Assembly stage			Use stage				En	d of lif	fe stag	е	Beyond system boundary		
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling-potential
A1	A2	A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
X	X	X	X	X	MND	MND	MND	MND	MND	MND	MND	X	X	X	X	X
SE	SE	SE	SE	SE	MND	MND	MND	MND	MND	MND	MND	SE	SE	SE	SE	SE

Environmental impact

Parameter	Unit	A1-A3	A4	A5	C1	C2	С3	C4	D
GWP fossil	kg CO2 -eq.	9,39 E-01	6,55 E-02	3,28 E-02	2,65 E-03	3,07 E-02	1,45 E-02	0,00 E+00	-2,14 E+00
GWP bio	kg CO2 -eq.	-1,55 E+01	0,00 E+00	0,00 E+00	0,00 E+00	0,00 E+00	1,55+01	0,00 E+00	0,00 E+00
ODP	kg CFC11-eq.	8,43 E-08	9,41 E-10	3,59 E-10	3,80 E-11	4,41 E-10	2,08 E-10	0,00 E+00	-2,14 E-08
POCP*	kg C2H4 -eq.	5,30 E-04	-1,27 E-04	-3,32 E-07	-5,15 E-06	-5,97 E-05	-2,82 E-05	0,00 E+00	-1,58 E-03
AP	kg SO2 -eq.	3,92 E-03	4,35 E-04	6,76 E-03	1,76 E-05	2,04 E-04	9,62 E-05	0,00 E+00	-1,39 E-02
ЕР	kg PO4-eq.	1,12 E-03	1,55 E-04	6,03 E-03	6,26 E-06	7,25 E-05	3,42 E-05	0,00 E+00	-6,16 E-04
ADPM	kg Sb-eq.	5,50 E-06	2,69 E-04	1,56 E-05	1,08 E-09	1,26 E-08	5,95 E-09	0,00 E+00	-1,55 E-06
ADPE	MJ	1,28 E+01	9,79 E-01	4,01 E-01	3,95 E-02	4,58 E-01	2,16 E-01	0,00 E+00	-4,79 E+00

^{*}GaBi separates NOx into NO and NO2. Due to this the appplied characterisation model with a marginal approach for POCP based on highly polluted ambient air can result in a negative characterisation factor for nitric oxide

GWP Global warming potential; ODP Depletion potential of the stratospheric ozone layer; POCP Formation potential of tropospheric photochemical oxidants; AP Acidification potential of land and water; EP Eutrophication potential; ADPM Abiotic depletion potential for non fossil resources; ADPE Abiotic depletion potential for fossil resources

Resource use

Parameter	Unit	A1-A3	A4	A5	C1	C2	С3	C4	D
RPEE	MJ	1,73 E+02	2,65 E-01	1,12 E+01	1,08 E-02	1,27 E-01	5,90 E-02	0,00 E+00	8,09 E+01
RPEM	MJ	1,63 E+02	0,00 E+00	0,00 E+00	0,00 E+00	0,00 E+00	-1,63 E+02	0,00 E+00	0,00 E+00
TPE	MJ	3,36 E+02	2,65 E-01	1,12 E+01	1,08 E-02	1,27 E-01	-1,63 E+02	0,00 E+00	8,09 E+01
NRPE	MJ	2,24 E+01	1,06 E+00	7,65 E-01	4,30 E-02	5,07 E-01	2,35 E-01	0,00 E+00	-1,51 E+02
NRPM	MJ	0,00 E+00	0,00 E+00	0,00 E+00					
TRPE	MJ	2,24 E+01	1,06 E+00	7,65 E-01	4,30 E-02	5,07 E-01	2,35 E-01	0,00 E+00	-1,51 E+02
SM	kg	-		-	-	-	-	-	-
RSF	MJ	-		-	-	-	-	-	-
NRSF	MJ	-		-	-		-	-	-3.92 E+01
W	m^3	4,21 E-02	1,94 E-02	7,54 E-03	7,86 E-04	9,08 E-03	4,29 E-03	0,00 E+00	-1,45 E+00

RPEE Renewable primary energy resources used as energy carrier; RPEM Renewable primary energy resources used as raw materials; TPE Total use of renewable primary energy resources; NRPE Non renewable primary energy resources used as energy carrier; NRPM Non renewable primary energy resources used as materials; TRPE Total use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; W Use of net fresh water

End of life - Waste

Parameter	Unit	A1-A3	A4	A5	C1	C2	С3	C4	D
HW	KG	3,17 E-07	4,79 E-08	1,90 E-05	1,94 E-09	2,25 E-08	1,06 E-08	0,00 E+00	4,56 E-08
NHW	KG	1,44 E-02	2,94 E-04	4,45 E-03	1,18 E-05	1,37 E-04	6,49 E-05	0,00 E+00	-1,76 E-02
RW	KG	2,42 E-03	1,26 E-06	1,08 E-04	5,04 E-08	5,84 E-07	2,75 E-07	0,00 E+00	6,68 E-02

HW Hazardous waste disposed; NHW Non hazardous waste disposed; RW Radioactive waste disposed

End of life - output flow

Parameter	Unit	A1-A3	A4	A5	C1	C2	С3	C4	D
CR	kg	0,00 E+00							
MR	kg	0.00 E+00	0,00 E+00	1.65 E-02	0,00 E+00				
MER	kg	0.00 E+00	0,00 E+00	0,00 E+00	0,00 E+00	0,00 E+00	1,01 E+01	0,00 E+00	0,00 E+00
EEE	MJ	0,00 E+00							
ЕТЕ	MJ	0,00 E+00							

 $\textit{CR Components for reuse; MR Materials for recycling; MER Materials for energy recovery; \textit{EEE Exported electric energy; ETE Exported thermal energy} \\$

Reading example: 9.0 E-03 = 9.0*10-3 = 0.009

Recalculation from m^3 to m^2 is made using an average factor of 46.5 m^2/m^3

Additional Norwegian requirements

Greenhous gas emission from the use of electricity in the manufacturing phase

Swedish production mix representing the average country specific electricity supply for final consumers, including electricity own consumption, transmission/distribution losses of electricity supply and electricity imports from neighbouring countries is used for the applied electricity for the manufacturing process (A3)

Data Source	Amount	Unit
GaBi Database v 10.0.0.7	35,3	Gram CO2eq /kWh

Dangerous substances

V	The product contains no substances given by the REACH Candidate list of the Norwegian priority
	list
	The product contains substances given by the REACH candidate list or the Norwegian priority list
	that are less than 0.1% by weight
	The product contains dangerous substances, more than 0.1% by weight given by the REACH
	candidate list or the Norwegian priority list, see table
	The product contains no substances, given by the REACH candidate list or the Norwegian priority

iist. The product is the	CAS No.	Amount	nex mj, see table
list. The product is cla	assified as nazardous w	aste (Avfallsforskriften, An	nex IIII. see table

Name	CAS No	Amount

Indoor environment

The product meets the requirements for low emissions.

Carbon footprint

The climate impact from the products including direct and indirect emissions of fossil CO_2 as well as the sequestration of biogenic carbon in product for 1 m^2 roof board is caluclated and reported below

Impact Category	Unit	A1-A3
GWP fossil	kg CO2eq	9,39 E-01
GWP biogenic sequestrated in product	kg CO2eq	-1,55 E+01
GWP tot	kg CO2eq	-1,46 E+01

Bibliography

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations

- Principles and procedures

ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and

guidelines

EN 15804:2012+A1:2013 Sustainability of construction works - Environmental product declaration -

Core rules for the product category of construction products

ISO 21930:2007 Sustainability in building construction - Environmental declaration of

building products

NPCR-015 v. 3.0 Wood and wood based products for use in contructtion

EN 16485 Round and sawn timber – Environmental Product Declarations – Product

Category rules for wood and wood based products for use in construction.

EcoInvent 3.6 Swiss Centre of Life Cycle Inventories

GaBi v 10.0.0.7 Sphera Solutions GaBi Software system and database for Lifecycle

Engineering

Ågren et.al Skogforsk arbetsrapport 1086-2021; datainsamling till underlag för

livscykelanalyser (LCA) av det svenska skogsbruket.

Lundström. J Energy consumption for different frame materials during the production

phase of an apartment building

Erlandsson. M Miljödata för arbetsfordon IVL dokument BPI 13/1 (2013)

Erlandsson. M Klimatpåverkan för byggnader med olika energiprestande IVL rapport

U5176.

Svensk energi Tillförd energi till fjärrvärme 2019 3

Lindström. E LCA report - Environmental Footprint of SCA's Solid Wood Products –

A lifecycle analysis of planed wood and roof board

	Program Operator	tlf	+47 23 08 80 00
© epd-norge	The Norwegian EPD Foundation		
The Norwegian EPD Foundation	Post Box 5250 Majorstuen, 0303 Oslo	e-post:	post@epd-norge.no
	Norway	web	www.epd-norge.no
	Publisher	tlf	+47 23 08 80 00
© epd-norge	The Norwegian EPD Foundation		
The Norwegian EPD Foundation	Post Box 5250 Majorstuen, 0303 Oslo	e-post:	post@epd-norge.no
	Norway	web	www.epd-norge.no
	Owner of the declaration	tlf	+46 60 193000
SCA	SCA Wood Scandinavia AB		
SCA SCA	Skepparplatsen 1, 851 88 Sundsvall	e-post:	info@sca.com
	Sweden	web	www.sca.com
	Author of the life cycle assesment	tlf	+46 60 193800
SCA	Eva Lindström		
SCA SCA	SCA R&D Centre	e-post:	info@sca.com
	Box 716, 851 21 Sundsvall, Sweden	web	www.sca.com

EPD for the best environmental decision

