

ENVIRONMENTAL PRODUCT DECLARATION

in accordance with ISO 14025, ISO 21930 and EN 15804

Owner of the declaration:	Leca International
Program operator:	The Norwegian EPD Foundation
Publisher:	The Norwegian EPD Foundation
Declaration number:	NEPD-2304-1052-EN
Registration number:	NEPD-2304-1052-EN
ECO Platform reference number:	-
Issue date:	29.07.2020
Valid to:	29.07.2025

Leca®-sora 4–32

Leca International

www.epd-norge.no

General information

Product:

Leca®-sora 4-32

Program operator:

The Norwegian EPD Foundation Pb. 5250 Majorstuen, 0303 Oslo Phone: +47 23 08 80 00 e-mail: post@epd-norge.no

Declaration number:

NEPD-2304-1052-EN

ECO Platform reference number:

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A1:2013 serves as core PCR NPCR 012:2018 Part B for Thermal insulation products

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit:

1 m3 Leca®-sora 4-32

Declared unit with option:

A1, A2, A3, A4

Functional unit:

1 m3 Leca®-sora 4-32

Verification:

Independent verification of data, other environmental information and the declaration according to ISO14025:2010, § 8.1.3 and § 8.1.4

External

Third party verifier:

Sign

and Ronnig

Senior Research Scientist, Anne Rønning

(Independent verifier approved by EPD Norway)

Owner of the declaration:

Leca International Contact person: Tone Storbråten Phone: +47 41 43 71 00 e-mail: info@leca.no

Manufacturer:

Leca International

Place of production:

Leca Finland Helsingintie 235 45740 Kuusankoski Finland

Management system:

ISO 14001 ISO 9001

Organisation no:

918 799 141

Issue date: 29.07.2020

Valid to: 29.07.2025

Year of study:

2019

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

Author of the Life Cycle Assessment:

The declaration is developed using eEPD v4.0 from LCA.no Approval: Company specific data are:

Collected/registered by: Tone Storbråten

Internal verification by: Jan Szanser

Approved:

Sign Hakon Hauan Managing Director of EPD-Norway

Product

Product description:

Lightweight expanded clay aggregate is a granular ceramic material made from natural clay. The clay is mixed with organic material, dried and expanded to 3-4 times its original volume in rotary kilns at temperatures of about 1150 °C. The output lightweight expanded clay aggregate granules, in the range 0-32 mm, are sieved and blended into different grades of products and distributed in bulk.

Product specification

The EPD describes results for production of lightweight expanded clay aggregate, grading 0-32 mm, at Leca Kuusankoski. For calculations of environmental data for other types of Leca than Leca -sora 4-32, densities from the table of different gradings should be used. The average annual production of lightweight expanded clay kiln material at Leca Kuusankoski has a weight of 0,28 ton/m³.

Materials	%
Clay	> 99
Waste materials	< 0,7
Lime	< 0,3

Technical data:

The relev ant technical proper	ties for Leca®-sora 4-32 are provided below
Technical property	Test methodTypical value
Loose bulk density	(NS-EN 1097-3)275 kg/m ³
Grading	(NS-EN 933-1)4-32 mm
Compressibility and confined	l compressiv e strength
	(NS-EN 13055-1)0,8 MPa
Thermal conductivity	(NS-EN 14063-1)0,12 W/mK
Reaction to fire	A1

The allocation is made in accordance with the provisions of EN 15804. Incoming

recycling process and transportation of the material is allocated to this analysis.

energy and water and waste production in-house is allocated equally among all

products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The

Grading [mm]- Density [ton/m³] 2-4.....0,375 4-10.....0,300 10-20....0,265

Market:

Finland

Reference service life, product

Not relevant

Reference service life, building

Not relevant

Allocation:

LCA: Calculation rules

Declared unit:

1 m3 Leca®-sora 4-32

Cut-off criteria:

All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

Data quality:

Specific data for the product composition are provided by the manufacturer. They represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on registered EPDs according to EN 15804, Ostfold Research databases, ecoinvent and other LCA databases. The data quality of the raw materials in A1 is presented in the table below.

Materials	Source	Data quality	Year
Coating materials	ecoinvent 3.4	Database	2017
Dolomite	ecoinvent 3.4	Database	2017
Filler	ecoinvent 3.4	Database	2017
Clay	Specific data	Database	2018
Heavy oil	LCA.no	Database	2019
Waste products	LCA.no	Database	2019

System boundary:

The system boundary of the EPD follows the modular structure in line with EN 15804. This section describes the modules which are contained within the scope of this study. As the scope of the assessment is up to the point at which the lightweight clay aggregate is manufactured modules A1- A4 have been considered in this LCA

Energy to the district heating network

Additional technical information:

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Transport from production place to user (A4)

Туре	Capacity utilisation (incl. return) %	Type of vehicle	Distance km	Fuel/Energy consumption	Unit	Value (I/t)
Truck	55,0 %	Truck, lorry over 32 tonnes, EURO 6	100	0,022606	l/tkm	2,26
Railway					l/tkm	
Boat					l/tkm	
Other Transportation					l/tkm	

Assembly (A5)

Use (B1)

	Unit	Value		Unit	Value
Auxiliary	kg				
Water consumption	m ³				
Electricity consumption	kWh		1		
Other energy carriers	MJ		1		
Material loss	kg		1		
Output materials fr ste treatment	kg		1		
Dust in the air	kg		1		
VOC emissions	kg]		

Maintenance (B2)/Repair (B3)

		Replacement (B4)/Refurbishment (B5)				Maintenance (B2)/Repair (B3)
Value	Unit	•	Value	Unit	•	
		Replacement cycle*			UCC.	Maintenance cycle*
	kWh	Electricity consumption		na.	e	Auxiliary
		Replacement of worn parts		110		Other resources
		 Described above if relevant 	AF.	m ³		Water consumption
		-	10	kWh		Electricity consumption
		47.		MJ		Other energy carriers
		· Ad		kg		Material loss
		" are		kg		VOC emissions
		End of Life (C1.)		kg 7)	sumption (B7	VOC emissions

0	perational	energy	(B6)	and	water	consum	ption	(B7)	
-			1/					(/	

operational energy (bb) and water consumption	(67)							
•	Unit	Value	· · · · ·	U	nit	Value	ĺ	
Water consumption	m ³		Hazardous waste disposed	k	g		ĺ	
Electricity consumption	kWh		Collected as mixed construction was	k	g		ĺ	
Other energy carriers	MJ		Reuse	k	g		ĺ	
Power output of equipment	kW		Recycling				ĺ	
			Energy recovery				ĺ	
			To landfill	k	9		ſ	

Transport to waste processing (C2)

Туре	Capacity utilisation (incl. return) %	Type of vehicle	Distance km	Fuel/Energy consumption	Unit	Value (I/t)
Truck					l/tkm	
Railway					l/tkm	
Boat					l/tkm	
Other Transportation					l/tkm	

LCA: Results

System boundaries (X=included, MND=module not declared, MNR=module not relevant)

Pro	Product stage			ruction llation age	User stage						End of life stage			Beyond the system bondaries		
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operation al water use	De- construction demolition	Transport	W aste processing	Disposal	Reuse-Recovery- Recycling- potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Х	Х	Х	Х	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND

Environmental impact

•					
Parameter	Unit	A1	A2	A3	A4
GWP	kg CO ₂ -eq	2,90E-01	6,96E-01	9,19E+01	2,28E+00
ODP	kg CFC11 -eq	5,19E-07	7,04E-08	4,46E-06	4,68E-07
POCP	kg C ₂ H ₄ -eq	1,35E-04	1,10E-04	5,13E-02	3,56E-04
AP	kg SO ₂ -eq	3,39E-03	1,84E-03	6,07E-01	5,87E-03
EP	kg PO ₄ ³⁻ -eq	4,03E-04	2,61E-04	6,70E-02	8,10E-04
ADPM	kg Sb -eq	1,62E-06	1,82E-06	8,29E-06	5,42E-06
ADPE	MJ	4,02E+01	1,14E+01	8,02E+02	3,74E+01

GWP Global warming potential; ODP Depletion potential of the stratospheric ozone layer; POCP Formation potential of tropospheric photochemical oxidants; AP Acidification potential of land and water; EP Eutrophication potential; ADPM Abiotic depletion potential for non fossil resources; ADPE Abiotic depletion potential for fossil resources

Reading example: 9,0 E-03 = 9,0*10-3 = 0,009 *INA Indicator Not Assessed

Resource use						
Parameter	Unit	A1	A2	A3	A4	
RPEE	MJ	2,17E-01	2,06E-01	8,35E+02	6,79E-01	
RPEM	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	
TPE	MJ	2,17E-01	2,06E-01	8,35E+02	6,79E-01	
NRPE	MJ	5,84E+00	1,17E+01	5,53E+02	3,85E+01	
NRPM	MJ	1,03E+02	0,00E+00	0,00E+00	0,00E+00	
TRPE	MJ	4,05E+01	1,17E+01	5,53E+02	3,85E+01	
SM	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	
RSF	MJ	0,00E+00	0,00E+00	2,19E-03	0,00E+00	
NRSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	
W	m ³	6,76E-03	2,77E-03	1,01E-01	9,12E-03	

RPEE Renewable primary energy resources used as energy carrier; RPEM Renewable primary energy resources used as raw materials; TPE Total use of renewable primary energy resources; NRPE Non renewable primary energy resources used as energy carrier; NRPM Non renewable primary energy resources used as materials; TRPE Total use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; W Use of net fresh water

Reading example: 9,0 E-03 = 9,0*10-3 = 0,009 *INA Indicator Not Assessed

End of life - Waste

Parameter	Unit	A1	A2	A3	A4	
HW	kg	2,63E-05	6,10E-06	1,89E-03	2,05E-05	
NHW	kg	4,43E-02	1,07E+00	2,52E+01	3,52E+00	
RW	kg	INA*	INA*	INA*	INA*	

HW Hazardous waste disposed; NHW Non hazardous waste disposed; RW Radioactive waste disposed Reading example: 9,0 E-03 = 9,0*10-3 = 0,009

*INA Indicator Not Assessed

End of life - Output flow

•					
Parameter	Unit	A1	A2	A3	A4
CR	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00
MR	kg	0,00E+00	0,00E+00	1,57E-02	0,00E+00
MER	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00
EEE	MJ	INA*	INA*	INA*	INA*
ETE	MJ	INA*	INA*	INA*	INA*

CR Components for reuse; MR Materials for recycling; MER Materials for energy recovery; EEE Exported electric energy; ETE Exported thermal energy

Reading example: 9,0 E-03 = 9,0*10-3 = 0,009

*INA Indicator Not Assessed

Additional Norwegian requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Data source	Amount	Unit
Electricity, renewable electricity with Guarantee of Origin, Finland (kWh)	Modified ecoinvent 3.4	16,90	g CO2-ekv/kWh

Dangerous substances

The product contains no substances given by the REACH Candidate list or the Norwegian priority list.

Indoor environment

Bibliography

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures.

ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines.

EN 15804:2012+A1:2013 Environmental product declaration - Core rules for the product category of construction products.

ISO 21930:2017 Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products.

ecoinvent v3, Allocation, cut-off by classification, Swiss Centre of Life Cycle Inventories.

Iversen et al., (2018) eEPD v3.0 - Background information for EPD generator system. LCA.no report number 04.18.

Iversen et al., (2018) EPD generator for Leca - Background information for customer application, LCA.no report number 06.18

NPCR Part A: Construction products and services. Ver. 1.0. April 2017, EPD-Norge.

NPCR 012 Part B for Thermal insulation products. Ver. 2.0 June 2018, EPD-Norge

NPCR 012:2018 Part B for Thermal insulation products

and parao po	Program operator and publisher	Phone:	+47 23 08 80 00
	The Norwegian EPD Foundation		
The Norwegian EPD Foundation	Post Box 5250 Majorstuen, 0303 Oslo	e-mail:	post@epd-norge.no
®	0303 Oslo Norway	web:	www.epd-norge.no
	Owner of the declaration	Phone:	+47 41 43 71 00
Qaca.	Leca International	Fax:	
alle	Årnesvegen 1	e-mail:	info@leca.no
	2009 Nordby	web:	www.leca.no
\frown	Author of the Life Cycle Assessment	Phone:	+47 916 50 916
	LCA.no AS	Fax:	
	Dokka 1C	e-mail:	post@lca.no
.no	1671 Kråkerøy	web:	www.lca.no
\frown	Developer of EPD generator	Phone:	+47 916 50 916
	LCA.no AS		
	Dokka 1C	e-mail:	post@lca.no
.no	1671 Kråkerøy	web:	www.lca.no