

ENVIRONMENTAL PRODUCT DECLARATION

in accordance with ISO 14025, ISO 21930 and EN 15804

Owner of the declaration:

Program operator:

Publisher:

Declaration number:

Registration number:

ECO Platform reference number:

Issue date:

Valid to:

Elektroskandia Norge AS

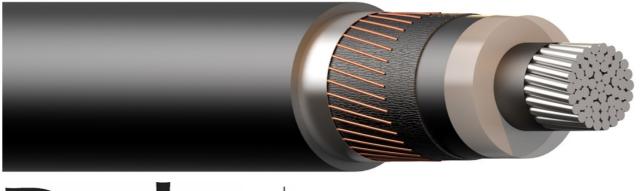
The Norwegian EPD Foundation

The Norwegian EPD Foundation

NEPD-3146-1790-EN

NEPD-3146-1790-EN

28.09.2021


28.09.2026

TSLI Pure 24kV AL 1x240/35mm² AFR

Elektroskandia Norge AS

www.epd-norge.no

Draka

A Brand of Prysmian Group

General information

Product:

TSLI Pure 24kV AL 1x240/35mm² AFR

Program operator:

The Norwegian EPD Foundation Pb. 5250 Majorstuen, 0303 Oslo Phone: +47 23 08 80 00 e-mail: post@epd-norge.no

Declaration number:

NEPD-3146-1790-EN

ECO Platform reference number:

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A1:2013 serves as core PCR NPCR 027 Part B for Electrical cables and wires

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit:

1 m TSLI Pure 24kV AL 1x240/35mm² AFR

Declared unit with option:

A1,A2,A3,A4,A5,C1,C2,C3,C4,D

Functional unit:

1 m of TSLI Pure 24 kV AL distribution power cable installed in a trench, from cradle-to-grave.

General information on verification of EPD from EPD tools:

Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Individual third party verification of each EPD is not required when the EPD tool is i) integrated into the company's environmental management system, ii) the procedures for use of the EPD tool are approved by EPDNorway, and iii) the process is reviewed annualy. See Appendix G of EPD-Norway's General Programme Instructions for further information on EPD tools.

Verification of EPD tool:

Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPDNorway's procedures and guidelines for verification and approval of EPD tools.

Fredrik Moltu Johnsen, Norsus AS

(no signature required)

Owner of the declaration:

Elektroskandia Norge AS Contact person: Pål Kristiansen Phone: +47 97 66 22 12 e-mail: pkr@elektroskandia.no

Manufacturer:

Prysmian Group Norge AS Kjerraten 16 3013 Drammen Norway

Place of production:

Prysmian Group Sverige AB Vallgatan 5 571 41 Nässjö Sweden

Management system:

ISO 14001, ISO 9001

Organisation no:

977 454 700

Issue date: 28.09.2021

Valid to: 28.09.2026

Year of study:

2020

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

Development and verification of EPD:

The declaration has been developed and verified using EPD tool lca.tools ver EPD2020.11, developed by LCA.no AS. The EPD tool is integrated into the company's environmental management system, and has been approved by EPD-Norway

Developer of EPD:

Ivan Ekerhovd, Prysmian Group Norge AS

Reviewer of company-specific input data and EPD:

Anders Nymark, Prysmian Group Norge AS

Approved:

Sign

Håkon Hauan, CEO EPD-Norge

Product

Product description:

Halogen free and flame retardant. Smoke generation in the case of fire is small, low smoke density (makes evacuation easier) and is not harmful to electrical equipment. Distribution cable for indoor use in 3-phase installation. Can be placed in pipes and in the ground. The cable is axially and radially waterproof.

Cenelec: N20XC7A5Z1-AR

Building Installations, Power distribution

Product specification

Conductor material: Aluminium Conductor surface: Bare

Longitudinal water blocking conductors: Yes

Inner semi-conducting layer: Yes Core insulation material: XLPE Outer semi-conducting layer: Yes

Drain wire: Yes

Longitudinal water blocking cable: Yes Radial water blocking cable: Yes

Screen construction: Aluminium tape and copper wire

Screen: Yes

Screen material: Copper, Bare Concentric conductor: Copper Material inner sheath: Other

Material outer sheath: Halogenfree polymer

Laminated sheath: Yes

Longitudinal water blocking screen: Yes

Cable shape: Round

Materials	kg	%
Aluminium	0,72	39,41
Copper	0,20	10,84
Other	0,51	27,88
Low Smoke Zero Halogen (LSZH)	0,40	21,87
Total:	1,82	

Packaging	kg	
Packaging - Plastic strips	0,00	
Total including packaging	1,82	

Technical data:

TSLI Pure 24kV AL 1x240/35mm² AFR

Art.Nr: 20217595 Elnummer: 1060210

Density: 1,7672 kg/m

Produced according to

HD 620 Part 10, Section K and M, HD604 (halogenfree sheath) Design

standard

IEC 60332-3-24 (Cat. C) Flame retardant

EN 60754-1 and EN 60754-2 Halogen free properties: EN 60754-1 (pH = 4,3,

Conductivity = 10μ S), EN 60754-2 (< 0,5% Halogen)

Low smoke IEC 61034

Market:

Scandinavia

Reference service life, product

The reference service life of the product is highly dependent on the conditions of use.

Reference service life, construcion

Expected lifetime 50 years, provided proper installation, load and ambient temperature.

LCA: Calculation rules

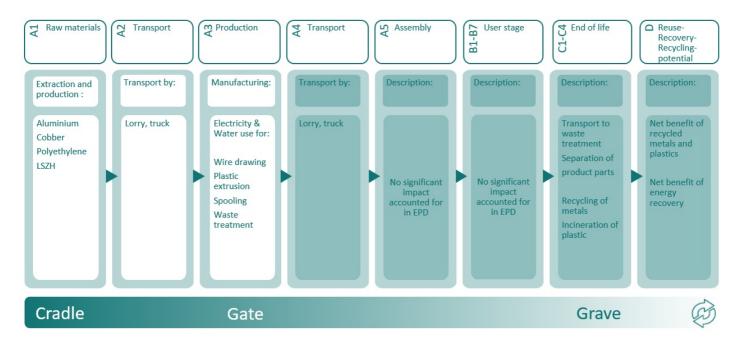
Declared unit:

1 m TSLI Pure 24kV AL 1x240/35mm² AFR

Cut-off criteria:

All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

Allocation:


The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

Data quality:

Specific data for the product composition are provided by the manufacturer. They represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on registered EPDs according to EN 15804, Ostfold Research databases, ecoinvent and other LCA databases. The data quality of the raw materials in A1 is presented in the table below.

Materials	Source	Data quality	Year
Aluminium	Supplier	EPD	2017
Aluminium	ecoinvent 3.6	Database	2019
Copper	ecoinvent 3.6	Database	2019
Low Smoke Zero Halogen (LSZH)	ecoinvent 3.6	Database	2019
Other	ecoinvent 3.6	Database	2019
Packaging - Plastic strips	ecoinvent 3.6	Database	2019
Aluminium	NEPD-2261-1034-EN	EPD	2020

System boundary:

Additional technical information:

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

In A4, a transport distance of 387 km from the Prysmian Group production site in Sweden to Elektroskandia's warehouse in Langhus was included. A distance of 300 km was also added as additional transport to market. Installation in trenches (A5) and removal (C1) is assumed to be done with other products such as piping systems and should be assessed at a contruction works level. For B1-B7 the default environmental impact and resource indicators in the EPD are assumed to be zero. Some other potential environmental impacts from the use phase might not be covered by the scope of an EPD. In C3 metals such as copper and aluminium are sent to recycling and other materials such as plastic insulation is sent to municipal incineration. Net benefit of material recycling and energy recovery is given in module D. Both aluminium and copper will replace a market average process for the metals in Europe.

Transport from production place to user (A4)

Туре	Capacity utilisation (incl. return) %	Type of vehicle	Distance km	Fuel/Energy consumption	Unit	Value (I/t)
Truck	55,0 %	Truck, lorry over 32 tonnes, EURO 5	687	0,022823	l/tkm	15,68
Railway					l/tkm	
Boat					l/tkm	
Other Transportation					l/tkm	

Assembly (A5)

	Unit	Value
Auxiliary	kg	
Water consumption	m ³	
Electricity consumption	kWh	
Other energy carriers	MJ	
Material loss	kg	
Output materials from waste treatment	kg	0,0007
Dust in the air	kg	
VOC emissions	kg	

End of Life (C1, C3, C4)

	Unit	Value
Hazardous waste disposed	kg	
Collected as mixed construction waste	kg	
Reuse	kg	
Recycling	kg	0,8234
Energy recovery	kg	0,9057
To landfill	kg	0,1711

••

Benefits and loads beyond the system boundaries (D)

	Unit	Value
Substitution of primary Copper with net secondary copper (kg)	kg	0,14
Substitution of primary Aluminium with net secondary aluminium (kg)	kg	0,62
Substitution of electricity, in Norway (MJ)	MJ	2,54
Substitution of thermal energy, district heating, in Norway (MJ)	MJ	17,44

LCA: Results

LCA results according to the indicators of EN 15804:2013+A1:2013 are presented in the following tables, for the declared unit defined on page 2 of the EPD document. All potential environmental impacts might not be covered by the EN 15804 indicators. This concerns indicators such as noise, electromagnetic radiation, electromagnetic fields and treatment brominated flame retardants.

System boundaries (X=included, MND=module not declared, MNR=module not relevant)

Product stage			instal	uction lation age	User stage						End of	life stage		Beyond the . system bondaries		
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational wafer use	De- construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling- potential
A1	A2	A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	. D
Х	Х	Х	Х	Χ								Χ	Χ	Х	Х	. X

Environmental impact

Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
GWP	kg CO ₂ -eq	1,52E+01	1,06E-01	2,01E-03	0	0	2,39E+00	1,28E-02	-5,84E+00
ODP	kg CFC11 -eq	9,62E-07	2,06E-08	4,00E-12	0	0	1,82E-08	8,63E-10	-5,01E-07
POCP	kg C ₂ H ₄ -eq	8,44E-03	1,71E-05	4,45E-09	0	0	2,09E-05	1,41E-06	-5,29E-03
AP	kg SO ₂ -eq	1,83E-01	3,44E-04	2,20E-07	0	0	4,12E-04	2,95E-05	-9,38E-02
EP	kg PO ₄ ³⁻ -eq	1,45E-02	5,78E-05	6,86E-08	0	0	9,01E-05	4,90E-06	-5,37E-03
ADPM	kg Sb -eq	7,68E-06	2,39E-07	5,10E-11	0	0	2,11E-07	1,12E-10	-2,61E-06
ADPE	MJ	1,93E+02	1,66E+00	3,57E-04	0	0	7,47E-01	8,37E-02	-6,35E+01

GWP Global warming potential; ODP Depletion potential of the stratospheric ozone layer; POCP Formation potential of tropospheric photochemical oxidants; AP Acidification potential of land and water; EP Eutrophication potential; ADPM Abiotic depletion potential for non fossil resources; ADPE Abiotic depletion potential for fossil resources

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009"

*INA Indicator Not Assessed

Norge

REXEL GROUP

Resource use

Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
RPEE	MJ	7,89E+01	3,00E-02	6,24E-06	0	0	9,45E-02	6,57E-03	-3,45E+01
RPEM	MJ	0,00E+00	0,00E+00	0,00E+00	0	0	0,00E+00	0,00E+00	0,00E+00
TPE	MJ	7,89E+01	3,00E-02	6,24E-06	0	0	9,45E-02	6,57E-03	-3,45E+01
NRPE	MJ	2,01E+02	1,71E+00	2,85E-02	0	0	8,48E-01	9,23E-02	-7,96E+01
NRPM	MJ	3,82E+01	0,00E+00	0,00E+00	0	0	0,00E+00	0,00E+00	0,00E+00
TRPE	MJ	2,39E+02	1,71E+00	2,85E-02	0	0	8,48E-01	9,23E-02	-7,96E+01
SM	kg	6,71E-02	0,00E+00	0,00E+00	0	0	0,00E+00	0,00E+00	0,00E+00
RSF	MJ	9,33E-03	0,00E+00	0,00E+00	0	0	0,00E+00	0,00E+00	-5,00E-04
NRSF	MJ	0,00E+00	0,00E+00	0,00E+00	0	0	0,00E+00	0,00E+00	0,00E+00
W	m ³	1,33E+01	4,04E-04	4,93E-07	0	0	2,56E-02	9,44E-05	-4,10E-02

RPEE Renewable primary energy resources used as energy carrier; RPEM Renewable primary energy resources used as raw materials; TPE Total use of renewable primary energy resources; NRPE Non renewable primary energy resources used as energy carrier; NRPM Non renewable primary energy resources used as materials; TRPE Total use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; W Use of net fresh water

"Reading example: 9.0 E-03 = 9.0*10-3 = 0.009"

*INA Indicator Not Assessed

End of life - Waste

Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
HW	kg	2,83E-02	9,11E-07	2,14E-09	0	0	3,54E-06	9,81E-08	5,68E-03
NHW	kg	2,09E+01	1,55E-01	4,26E-05	0	0	4,67E-02	2,47E-01	-6,53E+00
RW	kg	9,57E-04	1,20E-05	1,43E-09	0	0	4,04E-06	5,55E-07	-3,39E-04

HW Hazardous waste disposed; NHW Non hazardous waste disposed; RW Radioactive waste disposed

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009"

*INA Indicator Not Assessed

End of life - Output flow

Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
CR	kg	0,00E+00	0,00E+00	0,00E+00	0	0	0,00E+00	0,00E+00	0,00E+00
MR	kg	1,12E-02	0,00E+00	0,00E+00	0	0	8,23E-01	0,00E+00	0,00E+00
MER	kg	2,04E-03	0,00E+00	6,62E-04	0	0	9,06E-01	0,00E+00	0,00E+00
EEE	MJ	1,33E-03	0,00E+00	1,42E-03	0	0	2,53E+00	0,00E+00	0,00E+00
ETE	MJ	1,46E-02	0,00E+00	1,56E-02	0	0	1,74E+01	0,00E+00	0,00E+00

CR Components for reuse; MR Materials for recycling; MER Materials for energy recovery; EEE Exported electric energy; ETE Exported thermal energy

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009"

*INA Indicator Not Assessed

Additional Norwegian requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Data source	Amount	Unit
El-mix, Sweden (kWh)	ecoinvent 3.4 Alloc Rec	42,67	g CO2-ekv/kWh

Dangerous substances

The product contains no substances given by the REACH Candidate list or the Norwegian priority list.

Indoor environment

Not relevant, the cable is intended for outdoor use.

Bibliography

 $ISO\ 14025: 2010\ Environmental\ labels\ and\ declarations\ -\ Type\ III\ environmental\ declarations\ -\ Principles\ and\ procedures.$

ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines.

EN 15804:2012+A1:2013 Environmental product declaration - Core rules for the product category of construction products.

ISO 21930:2017 Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products.

ecoinvent v3, Allocation, cut-off by classification, Swiss Centre of Life Cycle Inventories.

Iversen et al., (2018) eEPD v3- Background information for EPD generator system. LCA.no report 04.18. Iversen et al., (2020) EPD generator for Elektroskandia and Prysmian Group - Background information and LCA data, LCA.no report 01.20

NPCR Part A: Construction products and services. Ver. 1.04.2017 EPD-Norge. NPCR 27 Part B for electrical cables and wires or NPCR 28 Part B for cable pipes Ver. 1.02.2020 EPD-Norge.

epd-norge.no The Norwegian EPD Foundation	Program operator and publisher The Norwegian EPD Foundation Post Box 5250 Majorstuen, 0303 Oslo,Norway	Phone: e-mail: web:	+47 23 08 80 00 post@epd-norge.no www.epd-norge.no
Elektroskandia Norge REXEL GROUP	Owner of the declaration	Phone:	+47 97 66 22 12
	Elektroskandia Norge AS	e-mail:	pkr@elektroskandia.no
	Postboks 143 1403 Langhus	web:	elektroskandia.no
LCA _{no}	Author of the Life Cycle Assessment	Phone:	+47 916 50 916
	LCA.no AS	e-mail:	post@lca.no
	Dokka 1C 1671 Kråkerøy	web:	www.lca.no
LCA	Developer of EPD generator	Phone:	+47 916 50 916
	LCA.no AS	e-mail:	post@lca.no
	Dokka 1C,1671 Kråkerøy	web:	www.lca.no