

epd-norge.no

# **ENVIRONMENTAL PRODUCT DECLARATION**

in accordance with ISO 14025, ISO 21930 and EN 15804

| Owner of the declaration:      | Vestre AS                    |
|--------------------------------|------------------------------|
| Program operator:              | The Norwegian EPD Foundation |
| Publisher:                     | The Norwegian EPD Foundation |
| Declaration number:            | NEPD-3038-1694-EN            |
| Registration number:           | NEPD-3038-1694-EN            |
| ECO Platform reference number: | -                            |
| Issue date:                    | 26.08.2021                   |
| Valid to:                      | 26.08.2026                   |

# Vroom bicycle rack small, C

Vestre AS

vestre



# **General information**

### Product:

Vroom bicycle rack small, C

#### Program operator:

The Norwegian EPD Foundation Pb. 5250 Majorstuen, 0303 Oslo Phone: +47 23 08 80 00 e-mail: post@epd-norge.no

#### **Declaration number:**

NEPD-3038-1694-EN

#### ECO Platform reference number:

#### This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A1:2013 serves as core PCR NPCR 026:2018 Part B for furniture

#### Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

#### **Declared unit:**

1 Pcs Vroom bicycle rack small, C

Declared unit with option:

A1, A2, A3, A4, A5, C2, C3, C4, D

#### Functional unit:

#### General information on verification of EPD from EPD tools:

Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Individual third party verification of each EPD is not required when the EPD tool is i) integrated into the company's environmental management system, ii) the procedures for use of the EPD tool are approved by EPDNorway, and iii) the proccess is reviewed annualy. See Appendix G of EPD-Norway's General Programme Instructions for further information on EPD tools.

#### Verification of EPD tool:

Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPDNorway's procedures and guidelines for verification and approval of EPD tools.

### Erik Svanes, Norsus AS

(no signature required)

## Owner of the declaration:

Vestre AS Contact person: Øyvind Bjørnstad Phone: e-mail: ob@vestre.com

# Manufacturer:

Vestre AS

#### Place of production:

Vestre AS Drammensveien 44A 0271 Oslo Norway

#### Management system:

ISO 14001:2015, Cert nr. 1422367 and ISO 9001: 2015, Cert nr. 32147

#### **Organisation no:**

948 140 349

### Issue date: 26.08.2021

Valid to: 26.08.2026

#### Year of study:

2020

Comparability:

EPDs from programmes other than the Norwegian EPD Foundation may not be comparable

#### Development and verification of EPD:

The declaration has been developed and verified using EPD tool lca.tools ver EPD2020.11, developed by LCA.no AS. The EPD tool is integrated into the company's environmental management system, and has been approved by EPD-Norway

Developer of EPD:

Michaela Båtnäs

Reviewer of company-specific input data and EPD:

Øyvind Bjørnstad

### Approved:

Håkon Hauan, CEO EPD-Norge

| Key environmental indicators | Unit       | Cradle to gate A1 - A3 |
|------------------------------|------------|------------------------|
| Global warming               | kg CO2 eqv | 21,49                  |
| Total energy use             | MJ         | 360,56                 |
| Amount of recycled materials | %          | 70,63                  |

Sign

# Product

# Market:

Global

### Product description:

VROOM bicycle rack comes in narrow and wide versions, and provides good support for two bicycles. It is made from extruded aluminum and has user-friendly rounded edges. The wide version can also be used as a tree guard.

# Product specification

| Materials             | kg   | %     | Recycled share in<br>material (kg) | Recycled share in<br>material (%) |
|-----------------------|------|-------|------------------------------------|-----------------------------------|
| Powder coating        | 0,13 | 1,67  | 0,00                               | 0,00                              |
| Aluminium             | 7,00 | 98,33 | 5,75                               | 82,10                             |
| Packaging             | kg   |       | Recycled share in<br>material (kg) | Recycled share in<br>material (%) |
| Packaging - Cardboard | 0,06 |       | 0,05                               | 76,30                             |
| Packaging - Pallet    | 0,98 |       | 0,00                               | 0,00                              |
| Packaging - Plastic   | 0,03 |       | 0,00                               | 0,00                              |

# LCA: Calculation rules

# Declared unit:

1 Pcs Vroom bicycle rack small, C

### Cut-off criteria:

All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

#### Allocation:

The allocation is made in accordance with the provisions of EN 15804. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

Where virgin materials are used, emissions and energy consumption connected with extraction and production are included.

Where recycled materials are used in the product, emissions and energy consumption related to the recycling process are included.

Emissions from incineration are allocated to the product system that uses the recovered energy.

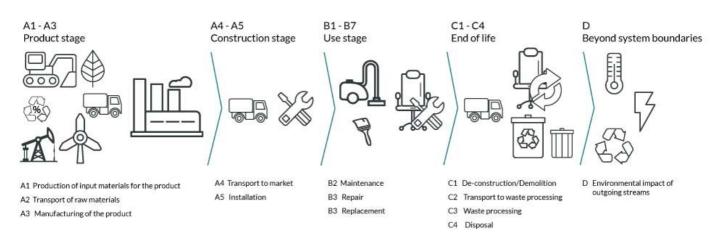
Emissions from incineration of waste are allocated to the product system that uses the recovered energy.

### Data quality:

Specific data for the product composition are provided by the manufacturer. They represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on registered EPDs according to EN 15804, Ostfold Research databases, ecoinvent and other LCA databases. The data quality of the raw materials in A1 is presented in the table below.

Specific manufacturing data are used. Raw materials by and large using EPD data, except for minor items like nuts & screws which are based on databases.

| Materials             | Source                          | Data quality | Year |
|-----------------------|---------------------------------|--------------|------|
| Packaging - Cardboard | ecoinvent 3.4                   | Database     | 2017 |
| Packaging - Plastic   | ecoinvent 3.4                   | Database     | 2017 |
| Packaging - Pallet    | Modified ecoinvent 3.4          | Database     | 2017 |
| Aluminium             | NEPD-1841-768 and ecoinvent 3.4 | Database     | 2017 |
| Powder coating        | ecoinvent 3.5                   | Database     | 2018 |


**Reference service life, product** 50 years

Technical data:

Reference service life, building

### System boundary:

Life cycle stages included are described in the figure and through the corresponding letter and number designations in the declaration (see figure below).



Additional technical information:



# The following information describe the scenarios in the different modules of the EPD.

The following information describe the scenarios in the different modules of the EPD.

Transportation to an average customer in Paris, France is 1,850 km (A4: average Euro 6 lorry > 32 tonnes). The use stage is not represented currently, as it varies very much, although the furniture as a rule require very little maintenance. End of life is represented by a dismantling and recycling of metals, whilst wood currently is being sent to incineration. We aim to change this as well.

# Transport from production place to user (A4)

| Туре                 | Capacity utilisation<br>(incl. return) % | Type of vehicle               | Distance km | Fuel/Energy<br>consumption | Unit  | Value (l/t) |
|----------------------|------------------------------------------|-------------------------------|-------------|----------------------------|-------|-------------|
| Truck                | 55,0 %                                   | Truck, over 32 tonnes, EURO 6 | 1850        | 0,022606                   | l/tkm | 41,82       |
| Railway              |                                          |                               |             |                            | l/tkm |             |
| Boat                 |                                          |                               |             |                            | l/tkm |             |
| Other Transportation |                                          |                               |             |                            | l/tkm |             |

#### Assembly (A5)

### End of Life (C1, C3, C4)

|                                       | Unit           | Value  |            |
|---------------------------------------|----------------|--------|------------|
| Auxiliary                             | kg             |        | ] [        |
| Water consumption                     | m <sup>3</sup> |        |            |
| Electricity consumption               | kWh            |        | ] <u>F</u> |
| Other energy carriers                 | MJ             |        | ] <u>F</u> |
| Material loss                         | kg             |        | ] [5       |
| Output materials from waste treatment | kg             | 0,0930 | ] [        |
| Dust in the air                       | kg             |        |            |
| VOC emissions                         | kg             |        |            |

|                                       | Unit | Value |
|---------------------------------------|------|-------|
| Hazardous waste disposed              | kg   |       |
| Collected as mixed construction waste | kg   |       |
| Reuse                                 | kg   |       |
| Recycling                             | kg   |       |
| Energy recovery                       | kg   |       |
| To landfill                           | kg   |       |

### Transport to waste processing (C2)

| Туре                 | Capacity utilisation<br>(incl. return) % | Type of vehicle             | Distance km | Fuel/Energy<br>consumption | Unit  | Value (l/t) |
|----------------------|------------------------------------------|-----------------------------|-------------|----------------------------|-------|-------------|
| Truck                | 38,8 %                                   | Truck, 16-32 tonnes, EURO 6 | 500         | 0,043626                   | l/tkm | 21,81       |
| Railway              |                                          |                             |             |                            | l/tkm |             |
| Boat                 |                                          |                             |             |                            | l/tkm |             |
| Other Transportation |                                          |                             |             |                            | l/tkm |             |

### Benefits and loads beyond the system boundaries (D)

|                                                                  | Unit | Value |
|------------------------------------------------------------------|------|-------|
| Substitution of Steel, low-alloyed (kg)                          | kg   | 1,18  |
| Substitution of electricity, in Norway (MJ)                      | MJ   | 0,85  |
| Substitution of thermal energy, district heating, in Norway (MJ) | MJ   | 9,40  |

..

# LCA: Results

The LCA results are presented below for the declared unit defined on page 2 of the EPD document.

# System boundaries (X=included, MND=module not declared, MNR=module not relevant)

| P                | roduct st | age           | instal    | uction<br>lation<br>ige |     | User stage End of life stage |        |             |               |                              |                          | User stage End of life stage . system |           |                      | Beyond the<br>system<br>bondaries |  |                                            |
|------------------|-----------|---------------|-----------|-------------------------|-----|------------------------------|--------|-------------|---------------|------------------------------|--------------------------|---------------------------------------|-----------|----------------------|-----------------------------------|--|--------------------------------------------|
| Raw<br>materials | Transport | Manufacturing | Transport | Assembly                | Use | Maintenance                  | Repair | Replacement | Refurbishment | Operational<br>energy<br>use | Operational<br>water use | De-<br>construction<br>demolition     | Transport | W aste<br>processing | Disposal                          |  | Reuse-Recovery-<br>Recycling-<br>potential |
| A1               | A2        | A3            | A4        | A5                      | B1  | B2                           | B3     | B4          | B5            | B6                           | B7                       | C1                                    | C2        | C3                   | C4                                |  | D                                          |
| Х                | Х         | Х             | Х         | Х                       | MND | MND                          | MND    | MND         | MND           | MND                          | MND                      | MND                                   | Х         | Х                    | Х                                 |  | Х                                          |

# **Environmental impact**

| Parameter | Unit                                 | A1       | A2       | A3       | A4       | A5       | C2       | C3       | C4        | D         |
|-----------|--------------------------------------|----------|----------|----------|----------|----------|----------|----------|-----------|-----------|
| GWP       | kg CO <sub>2</sub> -eq               | 2,11E+01 | 1,27E-01 | 2,30E-01 | 1,26E+00 | 1,34E-01 | 6,54E-01 | 9,50E-02 | -6,15E-01 | -2,06E+00 |
| ODP       | kg CFC11 -eq                         | 1,22E-06 | 2,39E-08 | 1,58E-07 | 2,58E-07 | 4,82E-09 | 1,23E-07 | 1,78E-08 | -5,10E-08 | -1,01E-07 |
| РОСР      | kg C <sub>2</sub> H <sub>4</sub> -eq | 1,00E-02 | 1,92E-05 | 5,36E-05 | 1,97E-04 | 9,74E-06 | 9,90E-05 | 1,56E-05 | -3,14E-04 | -1,46E-03 |
| AP        | kg SO <sub>2</sub> -eq               | 1,67E-01 | 2,99E-04 | 1,41E-03 | 3,24E-03 | 2,58E-04 | 1,54E-03 | 3,69E-04 | -3,63E-03 | -9,25E-03 |
| EP        | kg PO4 <sup>3-</sup> -eq             | 1,19E-02 | 3,92E-05 | 3,22E-04 | 4,47E-04 | 6,85E-05 | 2,02E-04 | 8,47E-05 | -2,69E-04 | -3,05E-03 |
| ADPM      | kg Sb -eq                            | 7,10E-05 | 3,95E-07 | 1,74E-06 | 2,99E-06 | 7,18E-08 | 2,03E-06 | 2,92E-07 | -1,32E-07 | -3,89E-05 |
| ADPE      | MJ                                   | 4,16E+02 | 1,92E+00 | 2,52E+00 | 2,06E+01 | 5,28E-01 | 9,87E+00 | 1,44E+00 | -6,61E+00 | -1,97E+01 |

GWP Global warming potential; ODP Depletion potential of the stratospheric ozone layer; POCP Formation potential of tropospheric photochemical oxidants; AP Acidification potential of land and water; EP Eutrophication potential; ADPM Abiotic depletion potential for non fossil resources; ADPE Abiotic depletion potential for fossil resources

Reading example: 9,0 E-03 = 9,0\*10-3 = 0,009 \*INA Indicator Not Assessed

### Resource use

| Parameter | Unit           | A1       | A2       | A3       | A4       | A5       | C2       | C3       | C4        | D         |
|-----------|----------------|----------|----------|----------|----------|----------|----------|----------|-----------|-----------|
| RPEE      | MJ             | 8,63E+01 | 2,83E-02 | 8,35E+00 | 3,75E-01 | 1,48E+01 | 1,46E-01 | 2,10E-02 | -2,87E+00 | -5,79E+00 |
| RPEM      | MJ             | 1,80E+01 | 0,00E+00  | 0,00E+00  |
| TPE       | MJ             | 1,04E+02 | 2,83E-02 | 8,35E+00 | 3,75E-01 | 1,48E+01 | 1,46E-01 | 2,10E-02 | -2,87E+00 | -5,79E+00 |
| NRPE      | MJ             | 2,44E+02 | 1,96E+00 | 2,01E+01 | 2,13E+01 | 1,82E+00 | 1,01E+01 | 1,48E+00 | -8,12E+00 | -2,01E+01 |
| NRPM      | MJ             | 9,53E-01 | 0,00E+00  | 0,00E+00  |
| TRPE      | MJ             | 2,45E+02 | 1,96E+00 | 2,01E+01 | 2,13E+01 | 1,82E+00 | 1,01E+01 | 1,48E+00 | -8,12E+00 | -2,01E+01 |
| SM        | kg             | 6,49E+00 | 0,00E+00  | 0,00E+00  |
| RSF       | MJ             | 0,00E+00 | 0,00E+00 | 7,96E-03 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00  | -1,68E-04 |
| NRSF      | MJ             | 0,00E+00  | 0,00E+00  |
| W         | m <sup>3</sup> | 8,59E-02 | 3,71E-04 | 4,87E-03 | 5,03E-03 | 4,76E-04 | 1,91E-03 | 2,77E-04 | -2,84E-03 | -1,28E-02 |

RPEE Renewable primary energy resources used as energy carrier; RPEM Renewable primary energy resources used as raw materials; TPE Total use of renewable primary energy resources; NRPE Non renewable primary energy resources used as energy carrier; NRPM Non renewable primary energy resources used as materials; TRPE Total use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; W Use of net fresh water

Reading example: 9,0 E-03 = 9,0\*10-3 = 0,009

# \*INA Indicator Not Assessed

# End of life - Waste

| Parameter                                                                                    | Unit | A1       | A2       | A3       | A4       | A5       | C2       | C3       | C4        | D         |
|----------------------------------------------------------------------------------------------|------|----------|----------|----------|----------|----------|----------|----------|-----------|-----------|
| HW                                                                                           | kg   | 7,20E-03 | 1,16E-06 | 7,53E-06 | 1,13E-05 | 8,39E-07 | 5,95E-06 | 8,63E-07 | 6,44E-04  | -1,74E-04 |
| NHW                                                                                          | kg   | 9,99E+00 | 1,05E-01 | 1,54E-01 | 1,94E+00 | 4,53E-02 | 5,41E-01 | 7,78E-02 | -2,88E-01 | -3,43E+00 |
| RW                                                                                           | kg   | INA*      | INA*      |
| HW Hazardous waste disposed; NHW Non hazardous waste disposed; RW Radioactive waste disposed |      |          |          |          |          |          |          |          |           |           |
| Reading example: 9,0 E-03 = 9,0*10-3 = 0,009<br>*INA Indicator Not Assessed                  |      |          |          |          |          |          |          |          |           |           |

# End of life - Output flow

| Parameter                                                                                                                                             | Unit | A1       | A2       | A3       | A4       | A5       | C2       | C3       | C4       | D        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| CR                                                                                                                                                    | kg   | 0,00E+00 |
| MR                                                                                                                                                    | kg   | 0,00E+00 | 0,00E+00 | 1,12E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 6,93E+00 | 0,00E+00 | 0,00E+00 |
| MER                                                                                                                                                   | kg   | 0,00E+00 | 0,00E+00 | 1,43E-04 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 |
| EEE                                                                                                                                                   | MJ   | INA*     |
| ETE                                                                                                                                                   | MJ   | INA*     |
| CP. Components for reuses MP. Materials for recycling: MEP. Materials for anorgy, recovery: EEE Expected electric energy: EEE Expected thermal energy |      |          |          |          |          |          |          |          |          |          |

CR Components for reuse; MR Materials for recycling; MER Materials for energy recovery; EEE Exported electric energy; ETE Exported thermal energy

Reading example: 9,0 E-03 = 9,0\*10-3 = 0,009

\*INA Indicator Not Assessed

# **Additional Norwegian requirements**

#### Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

| Electricity mix      | Data source             | Amount | Unit          |
|----------------------|-------------------------|--------|---------------|
| El-mix, Sweden (kWh) | ecoinvent 3.4 Alloc Rec | 42,67  | g CO2-ekv/kWh |

#### Dangerous substances

The product contains no substances given by the REACH Candidate list or the Norwegian priority list.

#### Indoor environment

Vestre recommends oak or ash if the product contains wood and is intended for indoor use.

# Additional environmental information

# Bibliography

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures.

ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines

EN 15804:2012 + A1:2013 Environmental product declaration - Core rules for the product category of construction products.

ISO 21930:2017 Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products.

ecoinvent v3, Allocation, cut-off by classification, Swiss Centre of Life Cycle Inventories.

Iversen et al., (2018) eEPD v3.0 - Background information for EPD generator system. LCA.no report number 04.18

Vold et al., (2019) EPD generator for Norsk Industri, Background information for industry application and LCA data, LCA.no report number 06.19.

NPCR Part A: Construction products and services. Ver. 1.0. April 2017, EPD-Norge.

NPCR 026 Part B for Furniture. Ver. 2.0 October 2018, EPD-Norge.

| epd-norge.no | <b>Program operator and publisher</b>                                       | Phone:                    | +47 23 08 80 00             |
|--------------|-----------------------------------------------------------------------------|---------------------------|-----------------------------|
|              | The Norwegian EPD Foundation                                                | e-mail:                   | post@epd-norge.no           |
|              | Post Box 5250 Majorstuen, 0303 Oslo,Norway                                  | web:                      | www.epd-norge.no            |
| vestre       | <b>Owner of the declaration</b><br>Vestre AS<br>Drammensveien 44A 0271 Oslo | Phone:<br>e-mail:<br>web: | ob@vestre.com<br>vestre.com |
| LCA          | <b>Author of the Life Cycle Assessment</b>                                  | Phone:                    | +47 916 50 916              |
|              | LCA.no AS                                                                   | e-mail:                   | post@lca.no                 |
|              | Dokka 1C 1671 Kråkerøy                                                      | web:                      | www.lca.no                  |
| LCA          | <b>Developer of EPD generator</b>                                           | Phone:                    | +47 916 50 916              |
|              | LCA.no AS                                                                   | e-mail:                   | post@lca.no                 |
|              | Dokka 1C 1671 Kråkerøy                                                      | web:                      | www.lca.no                  |