

ENVIRONMENTAL PRODUCT DECLARATION

in accordance with ISO 14025, ISO 21930 and EN 15804

Owner of the declaration:	Jotun A/S
Program operator:	The Norwegian EPD Foundation
Publisher:	The Norwegian EPD Foundation
Declaration number:	NEPD-2685-1385-EN
Registration number:	NEPD-2685-1385-EN
ECO Platform reference number:	-
Issue date:	12.02.2021
Valid to:	12.02.2026

Jotapipe AC 1010, Jotun Czech A.S.

Jotun A/S

www.epd-norge.no

General information

Product:

Jotapipe AC 1010, Jotun Czech A.S.

Program operator:

The Norwegian EPD Foundation Pb. 5250 Majorstuen, 0303 Oslo Phone: +47 23 08 80 00 e-mail: post@epd-norge.no

Declaration number:

NEPD-2685-1385-EN

ECO Platform reference number:

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A1:2013 serves as core PCR. IBU PCR Part B for coatings with organic binders

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit:

1 kg Jotapipe AC 1010, Jotun Czech A.S.

Declared unit with option:

A1,A2,A3,A4

Functional unit:

Verification:

Independent verification of data, other environmental information and the declaration according to ISO14025:2010, § 8.1.3 and § 8.1.4

External

Third party verifier:

Sign

anc Konnis

Senior Research Scientist, Anne Rønning

(Independent verifier approved by EPD Norway)

Owner of the declaration:

Jotun A/S Contact person: Anne Lill Gade Phone: +47 33 45 70 00 e-mail: anne.lill.gade@jotun.no

Manufacturer:

Jotun A/S

Place of production:

Jotun CZECH A.S. Na Rovném 866, 400 04 Trmice Czech Republic

Management system:

ISO 9001:2008 Certificate nr: 0044915-00, ISO 14001:2004 Certificate nr 0044914-00, ISO 45001: 2018 Certificate nr: 0098139

Organisation no:

923 248 579

Issue date: 12.02.2021

Valid to: 12.02.2026

Year of study:

2021

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

Author of the Life Cycle Assessment:

The declaration is developed using EPD tool lca.tools ver EPD2020.11, developed by LCA.no AS Approval:

Collec	ted/r	egister	ed by:	Cleo A	Alves	Otterbech

Internal verification by: Anne Lill Gade

Approved:

Sign
Haken Davay
Håkon Hauan Managing Director of EPD-Norway

Product

Product description:

Jotapipe AC 1010 is a fusion-bonded epoxy designed as an anticorrosion coating for pipelines. The product is available in a choice of reactivities to ensure suitability as both a stand-alone FBE and a primer in multi-layer polyolefin systems.

Product specification

For information on Green Building Standard credits, see "Additional Information" on page 4.

The material composition of the declared mixed product is given below:

Materials	%
Binder	50 - 75 %
Filler	10 - 25 %
Pigment	3 - 5 %
Additive	1 - 3 %
Solvent	< 0.1%

Technical data:

Density: 1.45 g/L Film thickness -As a stand-alone coating: 300-500 μm (12-20 mils) -As a primer: 150-500 μm (6-20 mils)

The most representative and worst case formulation produced at the manufacturing site is chosen for this EPD. For products with a selection of colours, this will be the formulation with the highest content of titanium dioxide.

The product packaging is based on an average sized cardboard box with plastic film, including secondary packaging such as pallets and plastic wrapping.

For safety, health and environmental conditions, see the Safety Data Sheet for the declared product on www.jotun.com.

For information on technical data, application and use of the product, see the Technical Data Sheet for the declared product on www.jotun.com.

Market:

Allocation:

Socotherm S.p.A., Adria, Italy.

Reference service life, product

The reference service life of the product is highly dependent on the conditions of use.

The allocation is made in accordance with the provisions of EN 15804.

allocation was performed for certain waste flows according to information

which the material was used. The recycling process and transportation of

Incoming energy, water and waste production in-house is primarily allocated equally among all products through mass allocation. Specific

provided by the site manager. VOC emissions have been allocated

entirely to the production of solvent based paints. Effects of primary

production of recycled materials is allocated to the main product in

Estimated service life, object

The coated object is not declared.

the material is allocated to this analysis.

LCA: Calculation rules

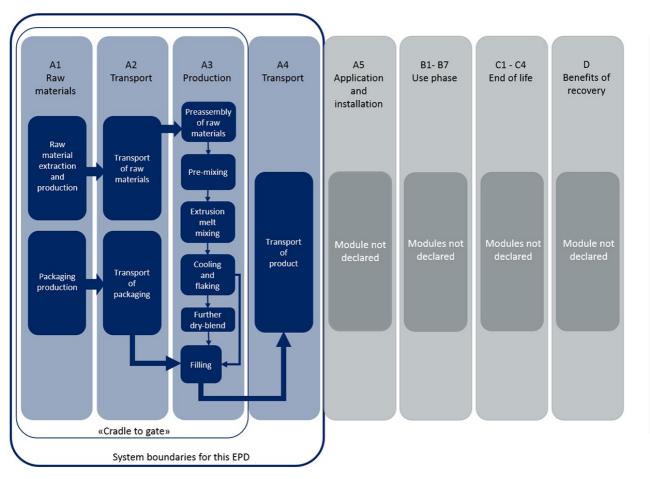
Declared unit:

1 kg Jotapipe AC 1010, Jotun Czech A.S.

Cut-off criteria:

All major raw materials and essential energy is included. The production process for raw materials and energy flows with very small amounts (less than 0.1 % dry matter) are not included. In total, more than 99% of the material input is included. These cut-off criteria do not apply for non-energy related emissions (such as wastes, hazardous materials and substances).

Data quality:


The CEPE database is used as basis for the raw material composition. Specific data for the product composition and raw material amounts has been provided by the manufacturer and represents the production of the declared product. Production site data was collected in 2015. Representative data from ecoinvent v3.2 was used for other processes. The data quality for the material input in A1 is presented in tabular form.

Materials	Source	Data quality	Year
Additives	CEPE RM Database v3.0	Database	2016
Binders and Resins	CEPE RM Database v3.0	Database	2016
Pigments and Fillers	CEPE RM Database v3.0	Database	2016
Additives	Østfoldforskning	Database	2016
Packaging	Østfoldforskning	Database	2017

System boundary:

The flowchart in the figure below illustrates the system boundaries for the analysis, in accordance with the modular principle of EN 15804. The analysis is a cradle-to-gate (A1 - A3) study, with option A4 transport to market.

Additional information:

The declared product contributes to Green Building Standard credits by meeting the following specific requirements:

LEED ® v4 (2013)/LEED ® v4.1 (2013):

MR credit: Building product disclosure and optimization.

- Material Ingredients, Option 2: Material Ingredient Optimization, International Alternative Compliance Path - REACH optimization: Fully inventoried chemical ingredients to 100 ppm and not containing substances on the REACH Authorization list – Annex XIV, the Restriction list – Annex XVII and the SVHC candidate list.

- Environmental Product Declarations. Product-specific Type III EPD (ISO 14025;21930, EN 15804) for Jotun Czech A.S.

BREEAM International (2016)

- Mat 01: Product-specific Type III EPD (ISO 14025;21930, EN 15804) for Jotun Czech A.S.

Additional certificates and approvals may be available on request.

Unit

Value

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

This is a cradle to gate (A1-A3) study, A4 transport to market is the only module declared after the factory gate, as described below. In this EPD, A4 includes the transport of the declared product from place of production in Czech Republic to Customer Socotherm S.p.A. in Adria, Italy.

Transport from production place to user (A4)

Туре	Capacity utilisation (incl. return) %	Type of vehicle	Distance km	Fuel/Energy consumption	Unit	Value (l/t)
Truck	53,0 %	Truck Europe, EURO 3	944	0,019595	l/tkm	18,50
Railway					l/tkm	
Boat					l/tkm	
Other Transportation					l/tkm	

Assembly (A5)

Use (B1)

Poplacement (P4)/Pofurbichment (P5)

•	Unit	Value	
Auxiliary	kg		
Water consumption	m ³		
Electricity consumption	kWh		1
Other energy carriers	MJ		1
Material loss	kg]
Output materials fr ste treatment	kg]
Dust in the air	kg		1
VOC emissions	kg		1

Maintenance (B2)/Penair (B3)

Maintenance (B2)/Repair (B3)			Replacement (B4)/Returbishment (B5)		
	Unit	Value		Unit	Value
Maintenance cycle*	UCC.		Replacement cycle*		
Auxiliary	Char.		Electricity consumption	kWh	
Other resources	4ric		Replacement of worn parts		
Water consumption	m ³	N6"	Replacement cycle* Electricity consumption Replacement of worn parts * Described above if relevant		
Electricity consumption	kWh		r a		
Other energy carriers	MJ		47.		
Material loss	kg		· AA		
VOC emissions	kg		" ar-		

Operational en	ergy (B6) and	water consum	ption	(B7)	
----------------	---------------	--------------	-------	------	--

(87)	End of Life (C1, C					
Unit	Value		Unit	Value		
m ³		Hazardous waste disposed	kg			
kWh		Collected as mixed construction we.	kg			
MJ		Reuse	kg			
kW		Recycling				
		Energy recovery				
		To landfill	kg			
	Unit m ³ kWh MJ	Unit Value m ³ kWh MJ MJ	Unit Value m³ Hazardous waste disposed kWh Collected as mixed construction wb. MJ Reuse MV Recycling Energy recovery	Unit Value Unit m³ Hazardous waste disposed kg kWh Collected as mixed construction was kg MJ Reuse kg kW Recycling kg		

Transport to waste processing (C2)

Туре	Capacity utilisation (incl. return) %	Type of vehicle	Distance km	Fuel/Energy consumption	Unit	Value (l/t)
Truck					l/tkm	
Railway					l/tkm	
Boat					l/tkm	
Other Transportation					l/tkm	

LCA: Results

System boundaries (X=included, MND=module not declared, MNR=module not relevant)

P	roduct sta	age	instal	ruction lation age		User stage End of life stage						Beyond the system bondaries				
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De- construction demolition	Transport	W aste processing	Disposal	Reuse-Recovery- Recycling- potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	. D
Х	Х	Х	Х	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	· MND

Environmental impact

Parameter	Unit	A1	A2	A3	A4
GWP	kg CO ₂ -eq	6,19E+00	3,04E-01	5,76E-01	8,37E-02
ODP	kg CFC11 -eq	5,83E-08	5,51E-08	3,10E-08	1,73E-08
POCP	kg C ₂ H ₄ -eq	1,75E-03	1,66E-04	8,45E-05	1,52E-05
AP	kg SO ₂ -eq	1,81E-02	5,06E-03	2,15E-03	4,38E-04
EP	kg PO4 ³⁻ -eq	3,82E-03	5,79E-04	2,78E-03	1,01E-04
ADPM	kg Sb -eq	1,47E-04	1,94E-07	4,70E-07	1,61E-07
ADPE	MJ	8,94E+01	4,59E+00	4,92E+00	1,41E+00

GWP Global warming potential; ODP Depletion potential of the stratospheric ozone layer; POCP Formation potential of tropospheric photochemical oxidants; AP Acidification potential of land and water; EP Eutrophication potential; ADPM Abiotic depletion potential for non fossil resources; ADPE Abiotic depletion potential for fossil resources

Reading example: 9,0 E-03 = 9,0*10-3 = 0,009 *INA Indicator Not Assessed

Resource use					
Parameter	Unit	A1	A2	A3	A4
RPEE	MJ	2,89E+00	9,53E-02	5,79E-01	2,15E-02
RPEM	MJ	1,01E+00	1,97E-02	2,49E-01	5,49E-03
TPE	MJ	3,91E+00	1,15E-01	8,28E-01	2,70E-02
NRPE	MJ	9,58E+01	4,75E+00	8,04E+00	1,46E+00
NRPM	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00
TRPE	MJ	9,58E+01	4,75E+00	8,04E+00	1,46E+00
SM	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00
RSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00
NRSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00
W	m ³	4,30E-01	7,50E-04	3,13E-03	3,19E-04

RPEE Renewable primary energy resources used as energy carrier; RPEM Renewable primary energy resources used as raw materials; TPE Total use of renewable primary energy resources; NRPE Non renewable primary energy resources used as energy carrier, NRPM Non renewable primary energy resources used as materials; TRPE Total use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; W Use of net fresh water

Reading example: 9,0 E-03 = 9,0*10-3 = 0,009 *INA Indicator Not Assessed

End of life - Waste

End of me Waste					
Parameter	Unit	A1	A2	A3	A4
HW	kg	3,36E-05	2,52E-06	1,52E-04	6,59E-07
NHW	kg	5,90E-01	1,51E-01	2,05E-01	1,22E-01
RW	kg	INA*	INA*	INA*	INA*
HW Hazardous waste disposed; NHW Non hazardous waste disposed; RW Radioactive waste disposed					
Reading example: 9,0 E-03 = 9,0*10-3 = 0,009 *INA Indicator Not Assessed					

End of life - Output flow

Parameter	Unit	A1	A2	A3	A4
CR	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00
MR	kg	0,00E+00	0,00E+00	2,59E-03	0,00E+00
MER	kg	0,00E+00	0,00E+00	6,48E-03	0,00E+00
EEE	MJ	INA*	INA*	INA*	INA*
ETE	MJ	INA*	INA*	INA*	INA*
CR Components for reuse; MR Materials for recycling; MER Materials for energy recovery; EEE Exported electric energy; ETE Exported thermal energy					
Reading example: 9,0 E-03 = 9,0*10-3 = 0,009					

Reading example: 9,0 E-03 = *INA Indicator Not Assessed

Additional requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Data source	Amount	Unit
Electricity, Czech Republic (kWh)	ecoinvent 3.3 Alloc Rec	847,40	g CO2-ekv/kWh

Dangerous substances

The product contains no substances given by the REACH Candidate list.

Indoor environment

The declared product do not emit volatile organic substances (VOC) after application.

Bibliography

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures.

ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines.

EN 15804:2012 + A1:2013 Environmental product declaration - Core rules for the product category of construction products.

ISO 21930:2017 Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products.

IBU PCR Part B: Requirements on the EPD for Coatings with organic binders. v1.4, September 2016.

Vold et al (2017). EPD and LCA tool for Jotun - Technical description and background information, OR 01.17, Ostfold Research, Fredrikstad 2017.

CEPE v3.0 Raw materials LCI database for the European coatings and printing ink industries, May 2016.

ecoinvent v3.2 Alloc Rec, Swiss Centre of Life Cycle Inventories.

BREEAM International (2016): BREEAM International New Construction Technical Manual. SD233-2.0:2017.

LEED®v4.1 (2019): LEED® v4.1 for Building design and construction, U.S. Green Building Council®.

LEED®v4 (2013): LEED® v4 for Building design and construction, U.S. Green Building Council®.

REACH (2006): Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006. REACH Authorization list – Annex XIV, the Restriction list – Annex XVII and the SVHC candidate list.

epd-norge.no	Program operator and publisher The Norwegian EPD Foundation	Phone:	+47 23 08 80 00
The Norwegian EPD Foundation	Post Box 5250 Majorstuen, 0303 Oslo	e-mail:	post@epd-norge.no
®	0303 Oslo Norway	web:	www.epd-norge.no
	Owner of the declaration	Phone:	+47 33 45 70 00
AINTIN	Jotun A/S	Fax:	
JOTUN	Hystadveien 167	e-mail:	anne.lill.gade@jotun.no
	3209 Sandefjord, Norway	web:	www.jotun.no
	Author of the Life Cycle Assessment	Phone:	+47 69 35 11 00
Mattaldfarakning	Østfoldforskning AS	Fax:	+47 69 34 24 94
O Østfoldforskning	Stadion 4	e-mail:	post@ostfoldforskning.no
0	1671 Kråkerøy	web:	www.ostfoldforskning.no
\frown	Developer of EPD generator	Phone:	+47 916 50 916
	LCA.no AS		
LCA	Dokka 1C	e-mail:	post@lca.no
.no	1671 Kråkerøy	web:	www.lca.no