

ENVIRONMENTAL PRODUCT DECLARATION

in accordance with ISO 14025, ISO 21930 and EN 15804

Owner of the declaration:	Protan AS
Program operator:	The Norwegian EPD Foundation
Publisher:	The Norwegian EPD Foundation
Declaration number:	NEPD-2478-1224-EN
Registration number:	NEPD-2478-1224-EN
ECO Platform reference number:	-
Issue date:	28.10.2020
Valid to:	28.10.2025

Tunnel Sealing

Protan AS

www.epd-norge.no

General information

Product:

Tunnel Sealing

Program operator:

The Norwegian EPD Foundation Pb. 5250 Majorstuen, 0303 Oslo Phone: +47 23 08 80 00 e-mail: post@epd-norge.no

Declaration number:

NEPD-2478-1224-EN

ECO Platform reference number:

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A1:2013 serves as core PCR NPCR 022:2018 Part B for Roof waterproofing

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit:

1 m2 Tunnel Sealing

Declared unit with option:

A1, A2, A3, A4, A5, C1, C2, C3, C4

Functional unit:

Verification:

Independent verification of data, other environmental information and the declaration according to ISO14025:2010, § 8.1.3 and § 8.1.4

External

Third party verifier:

Sign

and Roming

Senior Research Scientist, Anne Rønning

(Independent verifier approved by EPD Norway)

Owner of the declaration:

Protan AS

Contact person: Sara Salman Phone: +47 94 01 78 58 e-mail: Sara.Salman@protan.no

Manufacturer:

Protan AS

Place of production:

Drammen-Norway

Management system:

ISO 9001 (95-OSL-AQ-6343) og ISO 14001 (NO 97-OSL-SYMI-8015)

Organisation no:

983 599 060

Issue date: 28.10.2020

Valid to: 28.10.2025

Year of study:

2020

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

Author of the Life Cycle Assessment:

The declaration is developed using eEPD v4.0 from LCA.no Approval: Company specific data are:

Collected/registered by: Øystein Edland

Sara Salman

Approved:

Internal verification by:

Sign Hakon Harrow
Håkon Hauan Managing Director of EPD-Norway

Product

Product description:

Tunnel Sealing has been developed for waterproofing tunnels and other types of rock installations. Protan Tunnel membrane is a tensioned, exposed and waterproof canvas that carries moisture and drips from the roof and walls down to suitable drainage. The product is joined with hot air so that the joints are waterproof, strong and durable.

Product specification

Protan Tunnel membrane is a polyester-reinforced, thermoplastic and waterproof membrane.

Protan Tunnel membrane is fire stabilized to satisfy requirements for fire resistance in tunnels and rock chambers. Documentation is provided on request.

Materials	%
PVC	29-32
Plasticizer	23-26
Polyester textile	27-29
Fire, heat-and UV stabilizer	10-14

LCA: Calculation rules

Declared unit:

1 m2 Protan Membrane for Tunnels

Cut-off criteria:

All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

Technical data:

PDS-554 eng

Market:

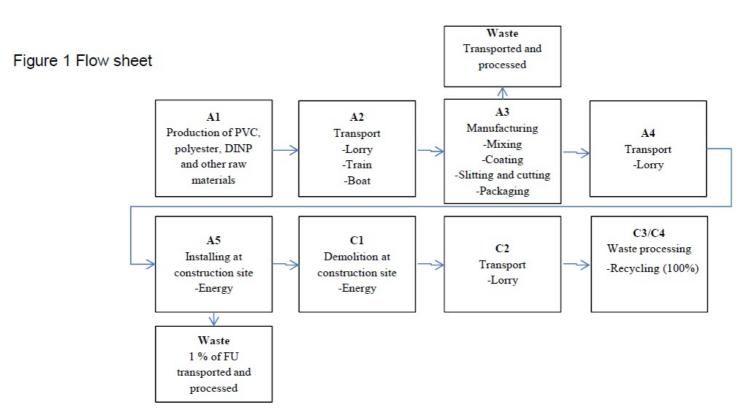
World

Reference service life, product

Assumed life time 50 years

Reference service life, building

Allocation:


The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Each product type is manufactured on a specific machine at Protan and has its own measuring system for energy consumption. Therefore, allocation is not relevant for calculating energy consumption in A3. The environmental impact and resource consumption for primary production of recycled materials is allocated to the original product system. Processing and transportation of the material to the production site is allocated to the analysis in this EPD

Data quality:

Specific data for the product composition are provided by the manufacturer. They represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on registered EPDs according to EN 15804, Ostfold Research databases, ecoinvent and other LCA databases. The data quality of the raw materials in A1 is presented in the table below.

Materials	Source	Data quality	Year
Chemicals	Chemicals below cut-off	No data	0
Plasticizer	PlasticsEurope, Eco-profile DINP	EPD	2014
E-PVC	PlasticsEurope, Eco-profile E-PVC	EPD	2014
S-PVC	PlasticsEurope, Eco-profile S-PVC	EPD	2014
Fillers	ecoinvent 3.4	Database	2017
Fire-, heat- and UV-stabilizers	ecoinvent 3.4	Database	2017
Polyester textile	Modified ecoinvent 3.4	Database	2017
Fire-, heat- and UV-stabilizers	ecoinvent 3.6	Database	2019

Additional technical information:

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Transport from production place to user (A4)

Туре	Capacity utilisation (incl. return) %	Type of vehicle	Distance km	Fuel/Energy consumption	Unit	Value (l/t)
Truck	38,8 %	Lastebil, EURO 6	550	0,043626	l/tkm	23,99
Railway					l/tkm	
Boat					l/tkm	
Other Transportation					l/tkm	

Assembly (A5)

•	Unit	Value	
Auxiliary	kg		Н
Water consumption	m ³		C
Electricity consumption	kWh	0,0690	R
Other energy carriers	MJ		R
Material loss	kg	0,0070	<u>E</u>
Output materials from waste treatment	kg	0,0280	<u> </u> [
Dust in the air	kg		
VOC emissions	kg		

End of Life (C1, C3, C4)

Unit	Value
kg	
kg	
kg	
kg	
kg	0,7000
kg	
	kg kg kg kg kg kg

Transport to waste processing (C2)

Туре	Capacity utilisation (incl. return) %	Type of vehicle	Distance km	Fuel/Energy consumption	Unit	Value (l/t)
Truck	38,8 %	Lastebil, EURO 6	50	0,043626	l/tkm	2,18
Railway					l/tkm	
Boat					l/tkm	
Other Transportation					l/tkm	

LCA: Results

System boundaries (X=included, MND=module not declared, MNR=module not relevant)

Product stage			instal	uction lation Ige		User stage						End of	life stage)	Beyond the . system bondaries	
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De- construction demolition	Transport	W aste processing	Disposal	Reuse-Recovery- Recycling- potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	. D
Х	Х	Х	Х	Х	MND	MND	MND	MND	MND	MND	MND	Х	Х	Х	Х	. MND

Environmental impact

Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4
GWP	kg CO ₂ -eq	3,20E+00	6,14E-02	5,07E-03	0	5,58E-03	1,46E+00	0
ODP	kg CFC11 -eq	6,18E-07	1,16E-08	3,46E-10	0	1,05E-09	1,77E-08	0
РОСР	kg C ₂ H ₄ -eq	9,81E-04	9,29E-06	8,02E-07	0	8,45E-07	5,27E-05	0
AP	kg SO ₂ -eq	1,83E-02	1,44E-04	1,77E-05	0	1,31E-05	1,20E-03	0
EP	kg PO ₄ ³⁻ -eq	4,44E-02	1,89E-05	1,23E-05	0	1,72E-06	1,43E-03	0
ADPM	kg Sb -eq	9,84E-06	1,91E-07	3,73E-08	0	1,73E-08	8,96E-07	0
ADPE	MJ	5,72E+01	9,27E-01	3,44E-02	0	8,42E-02	2,85E+00	0

GWP Global warming potential; ODP Depletion potential of the stratospheric ozone layer; POCP Formation potential of tropospheric photochemical oxidants; AP Acidification potential of land and water; EP Eutrophication potential; ADPM Abiotic depletion potential for non fossil resources; ADPE Abiotic depletion potential for fossil resources

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

Resource use

Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4
RPEE	MJ	4,85E+00	1,37E-02	2,82E-01	0	1,24E-03	3,31E-01	0
RPEM	MJ	1,94E-01	0,00E+00	4,86E-05	0	0,00E+00	0,00E+00	0
ТРЕ	MJ	5,04E+00	1,37E-02	2,82E-01	0	1,24E-03	3,31E-01	0
NRPE	MJ	4,39E+01	9,49E-01	5,04E-02	0	8,62E-02	4,34E+00	0
NRPM	MJ	2,09E+01	0,00E+00	0,00E+00	0	0,00E+00	0,00E+00	0
TRPE	MJ	6,48E+01	9,49E-01	5,04E-02	0	8,62E-02	4,34E+00	0
SM	kg	0,00E+00	0,00E+00	0,00E+00	0	0,00E+00	0,00E+00	0
RSF	MJ	1,79E-04	0,00E+00	4,90E-05	0	0,00E+00	0,00E+00	0
NRSF	MJ	0,00E+00	0,00E+00	0,00E+00	0	0,00E+00	0,00E+00	0
W	m ³	5,13E-02	1,79E-04	4,59E-05	0	1,63E-05	3,61E-03	0

RPEE Renewable primary energy resources used as energy carrier; RPEM Renewable primary energy resources used as raw materials; TPE Total use of renewable primary energy resources; NRPE Non renewable primary energy resources used as energy carrier; NRPM Non renewable primary energy resources used as materials; TRPE Total use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; W Use of net fresh water

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life - Waste

Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4				
HW	kg	4,24E-04	5,59E-07	6,14E-08	0	5,08E-08	2,47E-05	0				
NHW	kg	6,12E+00	5,08E-02	4,30E-03	0	4,62E-03	1,90E-01	0				
RW	kg	INA*	INA*	INA*	0	INA*	INA*	0				
HW Hazardous waste disposed; NHW	HW Hazardous waste disposed; NHW Non hazardous waste disposed; RW Radioactive waste disposed											
"Reading example: 9,0 E-03 = 9,0*10- *INA Indicator Not Assessed	3 = 0,009"											

End of life - Output flow

Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4	
CR	kg	0,00E+00	0,00E+00	0,00E+00	0	0,00E+00	0,00E+00	0	
MR	kg	0,00E+00	0,00E+00	3,65E-03	0	0,00E+00	0,00E+00	0	
MER	kg	0,00E+00	0,00E+00	2,39E-02	0	0,00E+00	0,00E+00	0	
EEE	MJ	INA*	INA*	INA*	0	INA*	INA*	0	
ETE	MJ	INA*	INA*	INA*	0	INA*	INA*	0	
CR Components for reuse; MR Materials for recycling; MER Materials for energy recovery; EEE Exported electric energy; ETE Exported thermal energy									
"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed									

Additional Norwegian requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Data source	Amount	Unit
Elektrisitet, Norge (kWh)	ecoinvent 3.4	31,04	g CO2-ekv/kWh

Dangerous substances

The product contains no substances given by the REACH Candidate list or the Norwegian priority list. The product is classified as hazardous waste (Avfallsforskriften, Annex III), see table.

Indoor environment

Bibliography

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures.

ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines.

EN 15804:2012+A1:2013 Environmental product declaration - Core rules for the product category of construction products.

ISO 21930:2017 Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products.

ecoinvent v3, Allocation, cut-off by classification, Swiss Centre of Life Cycle Inventories.

Iversen et al., (2018) eEPD v3.0 - Background information for EPD generator system. LCA.no report number 04.18.

Iversen et al., (2018) EPD¬generator for Protan AS, Bakgrunnsrapport og livsløpsdata, LCA.no report number 02.08.

NPCR Part A: Construction products and services. Ver. 1.0. April 2017, EPD-Norge.

NPCR 022 Part B for Roof waterproofing. Ver. 2.0 June 2018, EPD-Norge.

epd-norge.no	Program operator and publisher The Norwegian EPD Foundation	Phone:	+47 23 08 80 00
The Norwegian EPD Foundation	Post Box 5250 Majorstuen, 0303 Oslo	e-mail:	post@epd-norge.no
	0303 Oslo Norway	web:	www.epd-norge.no
	Owner of the declaration	Phone:	+47 94 01 78 58
	Protan AS	Fax:	
S PROTAN	Baches vei 1	e-mail:	Sara.Salman@protan.no
•	3413 Lier	web:	www.protan.no
\frown	Author of the Life Cycle Assessment	Phone:	+47 916 50 916
	LCA.no AS	Fax:	90571091
LCA	Dokka 1C	e-mail:	post@lca.no
no	1671 Kråkerøy	web:	www.lca.no
\frown	Developer of EPD generator	Phone:	+47 916 50 916
	LCA.no AS		
(LCA)	Dokka 1C	e-mail:	post@lca.no
.no	1671 Kråkerøy	web:	www.lca.no