

ENVIRONMENTAL PRODUCT DECLARATION

in accordance with ISO 14025, ISO 21930 and EN 15804

Owner of the declaration:

Program operator:

Publisher:

Declaration number:

Registration number:

ECO Platform reference number:

Issue date:

Valid to:

Jotun A/S

The Norwegian EPD Foundation

The Norwegian EPD Foundation

NEPD-2378-1111-EN

NEPD-2378-1111-EN

-

17.09.2020

17.09.2025

Penguard Express MIO WF, Jotun Coatings (Zhangjiagang) Co. Ltd.

Jotun A/S

www.epd-norge.no

General information

Product:

Penguard Express MIO WF, Jotun Coatings (Zhangjiagang) Co. Ltd.

Program operator:

The Norwegian EPD Foundation Pb. 5250 Majorstuen, 0303 Oslo Phone: +47 23 08 80 00 e-mail: post@epd-norge.no

Declaration number:

NEPD-2378-1111-EN

ECO Platform reference number:

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A1:2013 serves as core PCR.

Product descriptions and scenarios are based on IBU PCR Part B for coatings with organic binders. This also applies for inorganic coatings.

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit:

1 kg Penguard Express MIO WF, Jotun Coatings (Zhangjiagang) Co. Ltd.

Declared unit with option:

A1,A2,A3

Functional unit:

Verification:

Independent verification of data, other environmental information and the declaration according to ISO14025:2010, \S 8.1.3 and \S 8.1.4

External

Third party verifier:

Sign

Senior Research Scientist, Anne Rønning

and Konnig

(Independent verifier approved by EPD Norway)

Owner of the declaration:

Jotun A/S

Contact person: Anne Lill Gade Phone: +47 33 45 70 00 e-mail: anne.lill.gade@jotun.no

Manufacturer:

Jotun A/S

Place of production:

Management system:

Jotun Coatings (Zhangjiagang) Co. Ltd. - Paint No. 39 Nanhai Road, Jiangsu River International Chemical Industry Park, Zhangjiagang

Free Trade Zone, Jiangsu 215634, China.

ISO 9001:2008 Certificate nr: 0044915-00, ISO 14001:2004 Certificate nr 0044914-

00, ISO 45001: 2018 Certificate nr: 0098139

923 248 579

Organisation no:

Issue date: 17.09.2020

Valid to: 17.09.2025

Year of study:

2020

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

Author of the Life Cycle Assessment:

The declaration is developed using eEPD v4.0 from LCA.no Approval:

Company specific data are:

Collected/registered by: Cleo Alves Otterbech

Internal verification by: Anne Lill Gade

Approved:

Sign

Håkon Hauan Managing Director of EPD-Norway

Product

Product description:

Penguard Express MIO WF is a two component waterborne amine cured epoxy coating. It is a fast drying, micaceous iron oxide (MIO) pigmented, high solids, high build product.

The declared product is specially designed for new construction where short dry to handle and over coating times are required. It can be used as mid coat in atmospheric environments. It is part of a complete water borne system with a recommended Jotun water borne primer and topcoat, or a part of a hybrid system with suitable solvent borne primer and topcoat.

Penguard Express MIO WF is suitable for structural steel and piping to be exposed to highly corrosive environments, C4 or C5 (ISO 12944-2). Recommended for offshore environments, refineries, power plants, bridges, buildings and mining equipment.

Product specification

For information on Green Building Standard credits, see "Additional Information" on page 4.

The material composition of the declared mixed product is given below:

Materials	%
Binder	25 - 50 %
Filler	10 - 25 %
Pigment	10 - 25 %
Water	10 - 25 %
Additive	5 - 10 %
Titianium dioxide	5 - 10 %
Solvents	3 - 5 %

Technical data:

Penguard Express MIO WF Comp A: 1.35 part(s) Penguard Express WF Comp B: 1 part(s) Density: 1.4 g/cm³ Solids by volume: 63 ± 2 %

Dry film thickness: $75 - 150 \,\mu m$ Wet film thickness: $120 - 240 \,\mu m$ Theoretical spreading rate: $8.3 - 4.1 \,m^2/l$

The most representative and worst case formulation produced at the manufacturing site is chosen for this EPD. For products with a selection of colours, this will be the formulation with the highest content of titanium dioxide.

The product packaging is based on an average sized metal packaging, including secondary packaging such as pallets and plastic wrapping.

For safety, health and environmental conditions, see the Safety Data Sheet for the declared product on www.jotun.com.

For information on technical data, application and use of the product, see the Technical Data Sheet for the declared product on www.jotun.com.

Market

Global. Transport to market is not included in this EPD.

Reference service life, product

The reference service life of the product is highly dependent on the conditions of use.

Estimated service life, object

The coated object is not declared.

LCA: Calculation rules

Declared unit:

1 kg Penguard Express MIO WF, Jotun Coatings (Zhangjiagang) Co. Ltd.

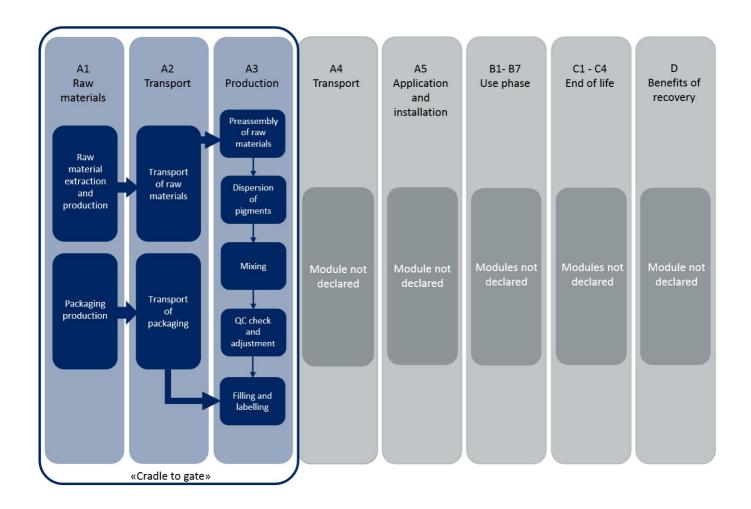
Cut-off criteria:

All major raw materials and essential energy is included. The production process for raw materials and energy flows with very small amounts (less than 0.1 % dry matter) are not included. In total, more than 99% of the material input is included. These cut-off criteria do not apply for non-energy related emissions (such as wastes, hazardous materials and substances).

Allocation:

The allocation is made in accordance with the provisions of EN 15804. Incoming energy, water and waste production in-house is primarily allocated equally among all products through mass allocation. Specific allocation was performed for certain waste flows according to information provided by the site manager. VOC emissions have been allocated entirely to the production of solvent based paints. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

Data quality:


The CEPE database is used as basis for the raw material composition. Specific data for the product composition and raw material amounts has been provided by the manufacturer and represents the production of the declared product. Production site data was collected in 2015. Representative data from ecoinvent v3.2 was used for other processes. The data quality for the material input in A1 is presented in tabular form.

Materials	Source	Data quality	Year
Packaging	Østfoldforskning	Database	2017
Penguard Express MIO WF Comp A, Jotun Coatings (ZJG)	Owner of EPD	Database	2019
Penguard Express MIO WF Comp B, Jotun Coatings (ZJG)	Owner of EPD	Database	2020

System boundary:

The flowchart in the figure below illustrates the system boundaries for the analysis, in accordance with the modular principle of EN 15804. The analysis is a cradle-to-gate (A1 - A3) study.

Additional information:

The declared product contributes to Green Building Standard credits by meeting the following specific requirements:

LEED® v4 (2013):

EQ credit: Low-emitting materials

- -VOC content for Industrial Maintenance (250 g/l) (CARB(SCM)2007) and emission equal or less than 0.5 mg/m3 (CDPH method 1.2). MR credit: Building product disclosure and optimization
- -Material Ingredients, Option 2: Material Ingredient Optimization, International Alternative Compliance Path REACH optimization: Fully inventoried chemical ingredients to 100 ppm and not containing substances on the REACH Authorization list Annex XIV, the Restriction list Annex XVII and the SVHC candidate list. -Environmental Product Declarations. Product-specific Type III EPD (ISO 14025;21930, EN 15804) for Jotun Coatings (Zhangjiagang) Co., Ltd.

BREEAM International (2016)

- -Hea 02: VOC exemplary emission ((ISO 16000-9/10 (2006) or CDPH method 1.2 (2017)) and the VOC content for Two-pack reactive performance coatings (80 g/L).
- -Mat 01: Product-specific Type III EPD (ISO 14025;21930, EN 15804) for Jotun Coatings (Zhangjiagang) Co., Ltd.

BREEAM International (2013):

-Hea 02: VOC content for Two-pack reactive performance coatings WB (140 g/l) (EU Directive 2004/42/CE).

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

This is a cradle to gate (A1-A3) EPD with no declared modules after the factory gate. Transport from place of production to user (A4) has to be calculated by the user.

Туре	Capacity utilisation (incl. return) %	Type of v	vehicle	Distance km	Fuel/Energy consumption	Unit		Value (I/t)
Truck						I/tkm		
Railway						I/tkm		
Boat						I/tkm		
Other Transr ~tation						I/tkm		
Assembly			Use (E	31)				
	Unit	Value					Unit	Value
Auxiliary	kg							
Water consumption	m ³							
Electricity consumption	kWh		1					
Other energy carriers	MJ MJ		1					
Material loss	dria		1					
Output materials from waste treatme	int OS -		1					
Dust in the air	df.		1					
VOC emissions	,,6	ra	1					
Maintenance (B2)/Repair (B3)		77		ment (B4)/Ref	urbishment (B5)			
	Remarios afficers Unit kg MJ Unit kg kg kg MJ MJ Kg kg kg kg kg kg kg kg kg kg	Value	73				Unit	Value
Maintenance cycle*			He.	dro				
Auxiliary	kg		Electr	ici. Do			kWh	
Other resources	kg		Repla	cement	1.			
Water consumption	m ³		* Desc	ribed above 1.	"CI.			
Electricity consumption	kWh				140			
Other energy carriers	MJ		1		46	Y		
Material loss	kg]			•		
VOC emissions	kg]					
Operational energy (B6) and water	consumption (B7)		End o	f Life (C1, C3, C4	4)			
	Unit	Value			-,		Uni	Value
Water consumption	m ³		Hazar	dous waste dispo	sed		kg	
Electricity consumption	kWh		Collec	ted as mixed co	nstruction waste		kg	
Other energy carriers	MJ		Reuse				kg	
Power output of equipment	kW		Recyc	ling			kg	
			Energ	y recovery			kg	
			To la	ndfill			kg	
Transport to waste processing (C2)								
riansport to waste processing (C2)	Capacity							
Туре	utilisation (incl.	Type of v	ehicle	Distance km	Fuel/Energy consumption	Unit		Value (I/t)

return) %

Truck Railway

Boat

Other Transportation

I/tkm

I/tkm

I/tkm

I/tkm

LCA: Results

System boundaries (X=included, MND=module not declared, MNR=module not relevant)

Product stage			instal	ruction lation age	User stage					End of	life stage)	Beyond the system bondaries			
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De- construction demolition	Transport	W aste processing	Disposal	Reuse-Recovery- Recycling- potential
A1	A2	A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	. D
Χ	Х	Х	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	. MND

Environmental impact

Parameter	Unit	A1-A3
GWP	kg CO ₂ -eq	4,28E+00
ODP	kg CFC11 -eq	1,90E-07
POCP	kg C ₂ H ₄ -eq	1,64E-03
AP	kg SO ₂ -eq	1,86E-02
EP	kg PO ₄ ³⁻ -eq	4,18E-03
ADPM	kg Sb -eq	2,11E-05
ADPE	MJ	6,26E+01

GWP Global warming potential; ODP Depletion potential of the stratospheric ozone layer, POCP Formation potential of tropospheric photochemical oxidants; AP Acidification potential of land and water, EP Eutrophication potential; ADPM Abiotic depletion potential for non fossil resources; ADPE Abiotic depletion potential for fossil resources

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009"

*INA Indicator Not Assessed

Resource use

Parameter	Unit	A1-A3
	MJ	2,86E+00
RPEM	MJ	4,61E-01
TPE	MJ	3,32E+00
NRPE	MJ	6,76E+01
	MJ	0,00E+00
TRPE	MJ	6,76E+01
SM	kg	0,00E+00
	MJ	0,00E+00
NRSF	MJ	0,00E+00
W	m ³	4,28E-01

RPEE Renewable primary energy resources used as energy carrier, RPEM Renewable primary energy resources used as raw materials; TPE Total use of renewable primary energy resources; NRPE Non renewable primary energy resources used as energy carrier, NRPM Non renewable primary energy resources used as materials; TRPE Total use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; W Use of net fresh water

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009"

*INA Indicator Not Assessed

End of life - Waste

Parameter	Unit	A1-A3
HW	kg	8,05E-03
NHW	kg	1,78E+00
RW	kg	INA*

HW Hazardous waste disposed; NHW Non hazardous waste disposed; RW Radioactive waste disposed

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009"

*INA Indicator Not Assessed

End of life - Output flow

Parameter	Unit	A1-A3
CR	kg	0,00E+00
MR	kg	3,94E-03
MER	kg	9,85E-03
EEE	MJ	INA*
ETE	MJ	INA*

CR Components for reuse; MR Materials for recycling; MER Materials for energy recovery; EEE Exported electric energy; ETE Exported thermal energy

"Reading example: 9.0 E-03 = 9.0*10-3 = 0.009"

*INA Indicator Not Assessed

Additional requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Data source	Amount	Unit
Electricity, China (kWh)	ecoinvent 3.3 Alloc Rec	1194,03	g CO2-ekv/kWh

Dangerous substances

The product contains no substances given by the REACH Candidate list.

Indoor environment

The declared product is emission tested by RISE Research Institutes of Sweden/SP Technical Research Institute of Sweden or Eurofins in accordance with California Department of Public Health (CDPH) Standard Method v1.2–2017.

Bibliography

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures.

ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines.

EN 15804:2012+A1:2013 Environmental product declarations - Core rules for the product category of construction products.

ISO 21930:2017 Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products.

IBU PCR Part B: Requirements on the EPD for Coatings with organic binders. v1.4, September 2016.

Vold et al (2017). EPD and LCA tool for Jotun - Technical description and background information, OR 01.17, Ostfold Research, Fredrikstad 2017.

CEPE v3.0 Raw materials LCI database for the European coatings and printing ink industries, May 2016.

ecoinvent v3.2 Alloc Rec, Swiss Centre of Life Cycle Inventories.

BREEAM International (2016): BREEAM International New Construction Technical Manual. SD233-2.0:2017.

BREEAM International (2013): BREEAM International New Construction Technical Manual. SD5075-1.0:2013.

CARB SCM (2007): California Air Resources Board (CARB) Suggested Control Measure for Architectural Coatings.

CDPH method 1.2 (2017): Standard method for the testing and evaluation of volatile organic chemical emissions from indoor sources. California Department of Public Health. EU Directive 2004/42/CE: The limitation of emissions of volatile organic compounds due to the use of organic solvents in certain paints and varnishes and vehicle refinishing products.

ISO 16000-series of indoor air standards for VOCs sampling and determination, i.e. 3, 6(2011); 9, 10, 11(2006).

LEED® v4 (2013): LEED® v4 for Building design and construction, U.S. Green Building Council®

REACH (2006): Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006. REACH Authorization list – Annex XIV, the Restriction list – Annex XVII and the SVHC candidate list.

and nava na	Program operator and publisher	Phone:	+47 23 08 80 00
epd-norge.no The Norwegian EPD Foundation	The Norwegian EPD Foundation		
The Norwegian EPD Foundation	Post Box 5250 Majorstuen, 0303 Oslo	e-mail:	post@epd-norge.no
®	0303 Oslo Norway	web:	www.epd-norge.no
	Owner of the declaration	Phone:	+47 33 45 70 00
AIOTINI	Jotun A/S	Fax:	
JOTUN	Hystadveien 167	e-mail:	anne.lill.gade@jotun.no
	3209 Sandefjord, Norway	web:	www.jotun.no
	Author of the Life Cycle Assessment	Phone:	+47 69 35 11 00
Ostfoldforskning	Østfoldforskning AS	Fax:	+47 69 34 24 94
U DSCIDIUIDISKIIIIŲ	Stadion 4	e-mail:	
0	1671 Kråkerøy	web:	www.ostfoldforskning.no
	Developer of EPD generator	Phone:	+47 916 50 916
$(1 \subset A)$	LCA.no AS		
(LCA)	Dokka 1C	e-mail:	post@lca.no
.no	1671 Kråkerøy	web:	www.lca.no