epd-norge.no

# **ENVIRONMENTAL PRODUCT DECLARATION**

in accordance with ISO 14025, ISO 21930 and EN 15804 Owner of the declaration: Program operator: Publisher: Declaration number: Registration number: ECO Platform reference number: Issue date: Valid to:

Skonto Prefab SIA The Norwegian EPD Foundation The Norwegian EPD Foundation NEPD-2319-1065-EN NEPD-2319-1065-EN -20.08.2020

20.08.2025

Hollow Core Slabs

Product

**Skonto Prefab SIA** 

Owner of the declaration

www.epd-norge.no





### **General information**

#### Product: Hollow Core Slabs

### Program operator:

The Norwegian EPD Foundation Post Box 5250 Majorstuen, 0303 Oslo Phone: +47 23 08 80 00 e-mail: post@epd-norge.no

### Declaration number:

NEPD-2319-1065-EN

ECO Platform reference number:

This declaration is based on Product Category Rules:

CEN Standard EN 15804 serves as core PCR NPCR Part A:2017 Construction products and services NPCR 020:2018 Part B for Concrete and concrete elements EN 16757:2017 serves as a complimentary PCR

#### Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturerinformation, life cycle assessment data and evidences.

Declared unit:

Declared unit with option (A1-A5, C1-C4): Production of 1 ton of prefabricated concrete elements

Functional unit:

Verification:

The CEN Norm EN 15804 serves as the core PCR. Independent verification of the declaration and data, according to ISO14025:2010 external

internal

Third party verifier:

sign Simon A. Sayagård

Simon A. Saxegård

(Independent verifier approved by EPD Norway)

Owner of the declaration:

Skonto Prefab SIA Contact person: Phone: e-mail:

Inga Nutovca +(371) 29294542 info@skontoprefab.lv

### Manufacturer:

Skonto Prefab SIA 33/4 Granita street, Acone, Salaspils area LV-2119 Latvia

### Place of production:

Acone, Salaspils area, Latvia

### Management system:

ISO 9001:2015 ISO 14001:2015

#### Organisation no: LV40003610650

Issue date: 20.08.2020

### Valid to:

20.08.2025

### Year of study:

Revision of NEPD00286E (2014) Year of revision: 2020

### Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

The EPD has been worked out by:

Michael M. Jenssen

MN asplan viak

Approved

Håkon Hauan Managing Director of EPD-Norway





### Product

### Product description:

Prestressed hollow core slabs (HCS) are used to construct floors in multi-story buildings, and are manufactured with extrusion method on 90 m long lines. The lines are heated in order to speed up hardening process. Reinforced with steel wires with diameter 9.3 and 12.5 mm. Four different thicknesses, ranging from 200mm up to 400mm. Standard extruded width is 1200mm. HCS span length up to 16 meters.

#### Product specification:

The composition of the product is described in the table below:

| Materials | kg      | %  |
|-----------|---------|----|
| Aggregate | 484     | 44 |
| Sand      | 305     | 28 |
| Cement    | 251     | 23 |
| Water     | 34      | 3  |
| Steel     | 20      | 2  |
| Additives | 0.00005 | <1 |

#### Technical data:

The product is certified in accordance with the EN1168 standard. Properties (min/max): Compressive strength: C35/45 - C50/60. Length: 1000 - 12000 mm. Width: 400 - 1200 mm. Height: 200-400 mm.

#### Market:

Norway, Sweden

Reference service life, product: Not relevant for declared unit

Reference service life, building: Not relevant for declared unit

### LCA: Calculation rules

Declared unit with options (A1-A5, C1-C4): Production of 1 ton of prefabricated concrete elements

#### System boundary:

Cradle to grave. Included modules production and construction are A1-A5, included modules for end of life are C1, C2 and C4. The use stage is not declared. Building demolition takes places in C1 while waste processing is considered in C3. Module D is not declared. Production process at Skonto includes mould preparation, casting of concrete product, curing and finalising. The product is then loaded on trucks for transportation to building site.

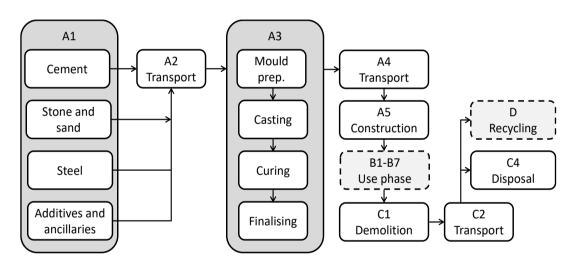



Figure 1: Flow chart of production system

#### Data quality:

The data is representative according to temporal, geographical and technological requirements as provided in EN15804. Data for Skonto Prefab production facility is for 2019 and represents technology in use. Material and energy use per declared unit has been calculated using expert judgment and validated against annual consumption. Where possible, specific supplier data has been used. Otherwise, generic data is from the ecoinvent 3.5 database. Data quality requirements are in line with core PCR; generic data are <10 years old.

#### Allocation:

The allocation is made in accordance with the provisions of EN 15804. Energy is allocated on expert judgment to each product group produced by Skonto Prefab to reflect differences between products. Otherwise, mass allocation is used.

#### Cut-off criteria:

All major raw materials and all the essential energy is included. The production process for raw materials and energy flows that are included with very small amounts (<1%) are not included. This cut-off rule does not apply for hazardous materials and substances.



### LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

The scenarios for transportation from production place to user is defined as transport from Salaspils (Latvia) to markets in Norway and Sweden. Scenarios represent typical transportation distances for Skonto Prefab products.

| Transport from | production | place to | user (A4) |
|----------------|------------|----------|-----------|

| Туре              | Capacity utilisation (incl. return) % | Type of vehicle   | Distance km | 0,          | Value |
|-------------------|---------------------------------------|-------------------|-------------|-------------|-------|
|                   |                                       |                   |             | consumption | (l/t) |
| Truck (to Norway) | 44                                    | Lorry, >32t       | 740         | 0.022 l/tkm | 16.3  |
| Boat (to Norway)  | 80                                    | 10 000 dwt vessel | 276         | N/A         | -     |
| Truck (to Sweden) | 44                                    | Lorry, >32t       | 265         | 0.022 l/tkm | 5.83  |
| Boat (to Sweden)  | 80                                    | 10 000 dwt vessel | 276         | N/A         | -     |

Description, A5:

Scenario is modelled as installation of a typical concrete product in a building, including waste. Fossil fuel for building machinery and auxiliary materials are included.

Description, C1, C3 and C4:

End of Life scenario is based on demolition of the building and extraction of reinforced concrete in C1. After waste processing and sorting (C3), 99% of steel and 90% of concrete is recycled. The remaining fractions are sent to landfill (module C4).

Description, C2:

Transport from building (demolished building) to waste handling facility.

| Assembly (A5)                         |                |       |
|---------------------------------------|----------------|-------|
|                                       | Unit           | Value |
| Auxiliary                             | kg             | 41    |
| Water consumption                     | m <sup>3</sup> | 0     |
| Electricity consumption               | kWh            | 0     |
| Other energy carriers                 | MJ             | 72    |
| Material loss                         | kg             | 1     |
| Output materials from waste treatment | kg             | 0     |
| Dust in the air                       | kg             | 0.012 |

End of Life (C1, C3, C4)

|                                       | Unit | Value |
|---------------------------------------|------|-------|
| Hazardous waste disposed              | kg   | 0     |
| Collected as mixed construction waste | kg   | 0     |
| Reuse                                 | kg   | 0     |
| Recycling                             | kg   | 986   |
| Energy recovery                       | kg   | 0     |
| To landfill                           | kg   | 108   |
|                                       |      |       |

### Transport to waste processing (C2)

| Туре             | Capacity utilisation (incl. return) % | Type of vehicle | Distance km | Fuel/Energy<br>consumption | Value<br>(I/t) |
|------------------|---------------------------------------|-----------------|-------------|----------------------------|----------------|
| Truck            | 26                                    | Lorry, 16-32t   | 278         | 0.044 l/tkm                | 12.2           |
| Waste collection | 50                                    | Lorry, 21t      | 19          | 0.39 l/tkm                 | 7.4            |



### LCA: Results

|               | duct sta  |               |           | nby stage |     | Use stage   |        |             |               |                        |                       | End of life stage             |           |                  | Beyond the<br>system<br>boundaries |                                        |
|---------------|-----------|---------------|-----------|-----------|-----|-------------|--------|-------------|---------------|------------------------|-----------------------|-------------------------------|-----------|------------------|------------------------------------|----------------------------------------|
| Raw materials | Transport | Manufacturing | Transport | Assembly  | Use | Maintenance | Repair | Replacement | Refurbishment | Operational energy use | Operational water use | De-construction<br>demolition | Transport | Waste processing | Disposal                           | Reuse-Recovery-<br>Recycling-potential |
| A1            | A2        | A3            | A4        | A5        | B1  | B2          | B3     | B4          | B5            | B6                     | B7                    | C1                            | C2        | C3               | C4                                 | D                                      |
| х             | х         | х             | х         | х         | MND | MND         | MND    | MND         | MND           | MND                    | MND                   | х                             | х         | х                | х                                  | MND                                    |

### System boundaries (X=included, MND= module not declared, MNR=module not relevant)

| Environme | ental impact                          |          |          |          |          |          |          |          |          |
|-----------|---------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|
| Parameter | Unit                                  | A1-A3    | A4 - NOR | A4 - SWE | A5       | C1       | C2       | C3       | C4       |
| GWP       | kg CO <sub>2</sub> -eqv               | 2.95E+02 | 7.35E+01 | 3.08E+01 | 1.24E+01 | 5.60E+00 | 6.89E+01 | 1.94E+00 | 5.64E-01 |
| ODP       | kg CFC11-eqv                          | 1.48E-05 | 1.28E-05 | 4.58E-06 | 1.51E-06 | 1.02E-06 | 1.24E-05 | 2.24E-07 | 2.05E-07 |
| POCP      | kg C <sub>2</sub> H <sub>4</sub> -eqv | 3.90E-02 | 1.58E-02 | 8.79E-03 | 2.83E-03 | 1.12E-03 | 1.15E-02 | 4.12E-04 | 2.11E-04 |
| AP        | kg SO <sub>2</sub> -eqv               | 8.14E-01 | 3.59E-01 | 2.17E-01 | 6.99E-02 | 4.26E-02 | 2.50E-01 | 1.21E-02 | 4.28E-03 |
| EP        | kg PO <sub>4</sub> <sup>3-</sup> -eqv | 1.18E-01 | 5.39E-02 | 3.04E-02 | 1.47E-02 | 9.22E-03 | 4.69E-02 | 1.94E-03 | 7.38E-04 |
| ADPM      | kg Sb-eqv                             | 3.61E-04 | 1.25E-04 | 4.48E-05 | 2.88E-05 | 1.90E-06 | 1.53E-04 | 2.82E-06 | 6.40E-07 |
| ADPE      | MJ                                    | 2.27E+03 | 1.15E+03 | 4.65E+02 | 1.51E+02 | 8.09E+01 | 1.00E+03 | 2.96E+01 | 1.73E+01 |

GWP Global warming potential; ODP Depletion potential of the stratospheric ozone layer; POCP Formation potential of tropospheric photochemical oxidants; AP Acidification potential of land and water; EP Eutrophication potential; ADPM Abiotic depletion potential for non fossil resources; ADPE Abiotic depletion potential for fossil resources



| Resource  | use            |          |          |          |          |          |          |          |          |
|-----------|----------------|----------|----------|----------|----------|----------|----------|----------|----------|
| Parameter | Unit           | A1-A3    | A4 - NOR | A4 - SWE | A5       | C1       | C2       | C3       | C4       |
| RPEE      | MJ             | 1.34E+02 | 9.76E+00 | 3.56E+00 | 1.24E+01 | 5.60E+00 | 6.89E+01 | 1.94E+00 | 5.64E-01 |
| RPEM      | MJ             | 0.00E+00 | 0.00E+00 | 0.00E+00 | 1.51E-06 | 1.02E-06 | 1.24E-05 | 2.24E-07 | 2.05E-07 |
| TPE       | MJ             | 1.34E+02 | 9.76E+00 | 3.56E+00 | 2.83E-03 | 1.12E-03 | 1.15E-02 | 4.12E-04 | 2.11E-04 |
| NRPE      | MJ             | 2.46E+03 | 1.16E+03 | 4.71E+02 | 6.99E-02 | 4.26E-02 | 2.50E-01 | 1.21E-02 | 4.28E-03 |
| NRPM      | MJ             | 0.00E+00 | 0.00E+00 | 0.00E+00 | 1.47E-02 | 9.22E-03 | 4.69E-02 | 1.94E-03 | 7.38E-04 |
| TRPE      | MJ             | 2.46E+03 | 1.16E+03 | 4.71E+02 | 2.88E-05 | 1.90E-06 | 1.53E-04 | 2.82E-06 | 6.40E-07 |
| SM        | kg             | 2.22E+00 | 0.00E+00 | 0.00E+00 | 1.51E+02 | 8.09E+01 | 1.00E+03 | 2.96E+01 | 1.73E+01 |
| RSF       | MJ             | 1.52E+01 | 0.00E+00 |
| NRSF      | MJ             | 8.59E-01 | 0.00E+00 | 0.00E+00 | 4.82E+00 | 4.36E-01 | 7.83E+00 | 5.47E+00 | 1.27E-01 |
| W         | m <sup>3</sup> | 1.51E+00 | 1.93E-01 | 6.95E-02 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |

RPEE Renewable primary energy resources used as energy carrier; RPEM Renewable primary energy resources used as raw materials; TPE Total use of renewable primary energy resources; NRPE Non renewable primary energy resources used as energy carrier; NRPM Non renewable primary energy resources used as materials; TRPE Total use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; W Use of net fresh water

| End of life | - Waste |            |           |            |           |           |           |             |           |
|-------------|---------|------------|-----------|------------|-----------|-----------|-----------|-------------|-----------|
| Parameter   | Unit    | A1-A3      | A4 - NOR  | A4 - SWE   | A5        | C1        | C2        | C3          | C4        |
| HW          | kg      | 0.00393601 | 0.0006173 | 0.00022107 | 0.000177  | 3.659E-05 | 0.0005487 | 5.00093E-05 | 1.168E-05 |
| NHW         | kg      | 135.73395  | 90.522519 | 32.416852  | 2.5851183 | 0.0894747 | 34.678225 | 0.12960829  | 107.66032 |
| RW          | kg      | 0.00798527 | 0.0071976 | 0.00257751 | 0.0008765 | 0.0005699 | 0.0069797 | 0.000277176 | 0.0001155 |

HW Hazardous waste disposed; NHW Non hazardous waste disposed; RW Radioactive waste disposed

## End of life - Output flow

| LING OF INC | - Output now |          |          |          |          |          |          |          |          |
|-------------|--------------|----------|----------|----------|----------|----------|----------|----------|----------|
| Parameter   | Unit         | A1-A3    | A4 - NOR | A4 - SWE | A5       | C1       | C2       | C3       | C4       |
| CR          | kg           | 0.00E+00 |
| MR          | kg           | 1.22E-01 | 0.00E+00 | 0.00E+00 | 1.22E-04 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 9.86E+02 |
| MER         | kg           | 5.64E-02 | 0.00E+00 | 0.00E+00 | 5.64E-05 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |
| EEE         | MJ           | 5.33E-05 | 0.00E+00 |
| ETE         | MJ           | 1.41E-06 | 0.00E+00 |

CR Components for reuse; MR Materials for recycling; MER Materials for energy recovery; EEE Exported electric energy; ETE Exported thermal energy

Reading example:  $9,0 \text{ E-}03 = 9,0^{*}10^{-3} = 0,009$ 



### **Additional Norwegian requirements**

### Greenhous gas emission from the use of electricity in the manufacturing phase

National production mix from import, medium woltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing prosess(A3).

| Data source     | Amount | Unit                        |
|-----------------|--------|-----------------------------|
| Econinvent v3.5 | 0.604  | kg CO <sub>2</sub> -eqv/kWh |

### Dangerous substances

- The product contains no substances given by the REACH Candidate list or the Norwegian priority list
- The product contains substances given by the REACH Candidate list or the Norwegian priority list that are less than 0,1 % by weight.
- The product contain dangerous substances, more then 0,1% by weight, given by the REACH Candidate List or the Norwegian Priority list, see table.
- The product contains no substances given by the REACH Candidate list or the Norwegian priority list. The product is classified as hazardous waste (Avfallsforskiften, Annex III), see table.

#### Indoor environment

The product has not been tested for emissions to indoor environment. The product contains no dangerous substances on the REACH Candidate list or the Norwegian priority list, and a water-based release agent is used. Based on this it is assumed that the product has a negligible impact on the indoor environment and therefore meets the requirements for low emissions (M1) according to EN15251:2007 Appendix E.

### Carbon footprint

Carbon footprint has not been worked out for the product.

| Bibliography                                                                       |                                                                                                                                                       |                                                                                                       |
|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
|                                                                                    | Environmental labels and declarations - Type III e<br>procedures                                                                                      | nvironmental declarations - Principles and                                                            |
| ISO 14044:2006                                                                     | Environmental management - Life cycle assessme                                                                                                        | ent - Requirements and guidelines                                                                     |
|                                                                                    | Sustainability of construction works - Environmen<br>product category of construction products                                                        | tal product declaration - Core rules for the                                                          |
|                                                                                    | Sustainability of construction works<br>Environmental product declarations<br>Product Category Rules for concrete and concrete                        | e elements                                                                                            |
| ISO 21930:2007                                                                     | Sustainability in building construction - Environme                                                                                                   | ental declaration of building products                                                                |
|                                                                                    | LCA report. EPD revision for prefabricated concre<br>life cycle inventories (LCI) and life cycle impact as<br>EPDs: NEPD00284E, NEPD00285E, NEPD00286 | ssessment (LCIA) for the revision of                                                                  |
| EPD Norway                                                                         | NPCR Part A:2017 Construction products and ser                                                                                                        | rvices. Reg 07.04.2017                                                                                |
| EPD Norway NPCR 020:2018 Part B for Concrete and concrete elements. Reg 18.10.2018 |                                                                                                                                                       |                                                                                                       |
| epd-norge.no                                                                       | Program operator<br>The Norwegian EPD Foundation<br>Post Box 5250 Majorstuen, 0303 Oslo<br>Norway                                                     | Phone: +47 23 08 80 00<br>e-mail: <u>post@epd-norge.no</u><br>web www.epd-norge.no                    |
| The Norwegian EPD Foundation                                                       | Publisher<br>The Norwegian EPD Foundation                                                                                                             | Phone: +47 23 08 80 00<br>e-mail: <u>post@epd-norge.no</u><br>web www.epd-norge.no                    |
| SKONTO<br>PREFAB                                                                   | Owner of the declaration<br>Skonto Prefab SIA<br>33/4 Granita stree, Acone, Salaspils area<br>LV-21119 Latvia                                         | Phone: +371 67 256 829   Fax +371 67 256 865   e-mail: info@skontoprefab.lv   web www.skontoprefab.lv |
| asplan viak                                                                        | Author of the Life Cycle Assessment<br>Asplan Viak AS<br>Abels gate 9, 7030 Trondheim<br>Norway                                                       | Phone: +47 417 99 417<br>e-mail: trondheim@asplanviak.no<br>web http://www.asplanviak.no              |