

ENVIRONMENTAL PRODUCT DECLARATION

in accordance with ISO 14025, ISO 21930 and EN 15804

Owner of the declaration:	Glasopor AS
Program operator:	The Norwegian EPD Foundation
Publisher:	The Norwegian EPD Foundation
Declaration number:	NEPD-2012-889-EN
Registration number:	NEPD-2012-889-EN
ECO Platform reference number:	-
Issue date:	16.01.2020
Valid to:	16.01.2025

Glasopor® 10-60mm

Glasopor AS

Glasopor

www.epd-norge.no

General information

Product:

Glasopor® 10-60mm

Program operator:

The Norwegia	an EPD Foundation
Pb. 5250 Maj	orstuen, 0303 Oslo
Phone:	+47 977 22 020
e-mail:	post@epd-norge.no
e-mail:	<u>post@epd-norge.no</u>

Declaration number:

NEPD-2012-889-EN

ECO Platform reference number:

This declaration is based on Product Category Rules:

CEN Standard EN 15804 serves as core PCR Requirements on the EPD PCR part A: Construction Products and services from The Norwegian EPD Foundation and PCR Part B: Lightweight aggregates / Bulk granulate, v. 04.12.2017 from www.ibu-epd.com (IBU)

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturerinformation, life cycle assessment data and evidences.

Declared unit:

1 m³ of Glasopor® 10-60 mm, bulk (180 kg/m³),

Declared unit with option:

A1-A3, A4 and A5

Functional unit:

Verification:

The CEN Norm EN 15804 serves as the core PCR. Independent verification of the declaration and data, according to ISO14025:2010

Internal

external

Ø

Third party verifier:

Of MUTverser

Ole Magnus Kålås Iversen (Independent verifier approved by EPD Norway)

Owner of the declaration:

Glasopor AS
Contact person:
Phone:
e-mail:

Svend Aage Larsen +47 906 46 147 <u>svend.aage.larsen@glasopor.no</u>

Manufacturer:

Glasopor AS

Place of production:

Onsøy stasjon 15, 1615 Fredrikstad, Norway

Management system:

TI certificate no 482: NS-ISO 9001, NS-ISO 14001, NS-ISO 50001, OHSAS 18001

Organisation no:

No 884 344 662

Issue date:

16.01.2020

Valid to:

16.01.2025

Year of study:

2019

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

The EPD has been worked out by:

Kjersti lestned

0stfoldforskning

Kjersti Prestrud

Approved

Håkon Hauan

Håkon Hauan Managing Director of EPD-Norway

Glasopor

0,107 W/mK

Product

Product description:

Glasopor is a cellular glass aggregate made from recycled glass containers collected from households in Norway. After going through a glass sorting facility, the glass is milled to glass powder. After milling and mixing the glass is expanded 7-8 times in a kiln at temperatures of 900oC. The output of the kiln breaks by cooling into a granular material of 10-60 mm with dry bulk density of 180 kg/m3. The product can be used as thermal insulation and draining layer. It can also be used as light weight filling material.

Product specification:

Glasopor is produced from the waste fraction sorted from the recycled, used glass containers.

Materials	kg	%
Recycled glass	176.4	98.00 %
Recycled silicone carbide	3.6	2.00 %
Total for product	180	100 %

Indication of intended use:

The product is intended to be used as a thermal insulation and draining layer and lightweight filling material below roads or railroads"

LCA: Calculation rules

Declared unit:

1 m3 of Glasopor® 10-60 mm, bulk (180 kg/m3),

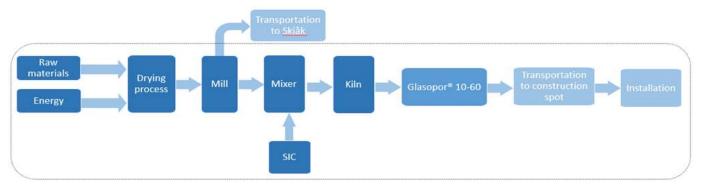
Technical data:											
Typical property	Test method	Typical value									
Loose bulk density	NS-EN 1097-3	180 kg/m ³									
Particle density	NS-EN 1097-6	380 kg/m ³									
Thermal conductivity (dry)	NS-EN 12667	0,097 W/mK									

See www.glasopor.no for more information

Market: Norway

(wet)

Reference service life:


Thermal conductivity

Limited by the service life of the construction were the product is used.

NS-EN 12667

System boundary:

The system boundary of the EPD follows the modular structure in line with EN 15804. Flow chart for the complete life cycle (A1-A5) with system boundaries are shown in the figure below. Outside the system boundary, but given in the flowchart, is the amount of milled glass that is sent to another production site.

Data quality:

Raw material	Data quality	Data Source and description	Age of data					
Recycled glass	Specific data	Waste fraction from glass recycling, Impacts are allocated to recycled glass.	2018					
Recycled silicone carbide	Specific data	Waste fraction from silicone production. Impacts are allocated to the silicone	2018					
Energy								
Use	Specific data	Glasopor AS, Onsøy	2018					
Extraction and combustion	Database	Ecolnvent 3.5						
Transport								
Fuel consumption	Specific data	Glasopor AS, Onsøy	2018					
Extraction and combustion	Database	Ecolnvent 3.5						

Other data are from ecoinvent v3.5, released in 2018, with some changes to improve the representativeness.

Allocation:

The allocation is made in accordance with the provisions of EN 15804. Effects of primary production of recycled materials are allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

Cut-off criteria:

All major raw materials and all the essential energy is included. The production process for raw materials and energy flows that are included with very small amounts (<1%) are not included. This cut-off rule does not apply for hazardous materials and substances.

LCA: Scenarios and additional technical information

The following information describes the scenarios in the different modules of the EPD.

Additional technical information

Glasopor is a supplier of insulation and ground fillngs for all types of constructions. The products are made of the waste fraction from recycled glass. The material has an indefinite service life and require no maintenance during use. This product can be excavated and used as filling for new contruction's service life.

Transport from production site to user (A4)

All produced Glasopor is sent directly to the construction site, there is no central storage. A scenario where 50 km large lorry to the construction site is included. The transport is limited by volume.

Туре	Capacity utilisation (incl. return) %	Type of vehicle	Distance km	Fuel/Energy	Unit
Truck	90.00 %	EURO6, 24 ton, diesel	50	0.018	l/tkm

Assembly (A5)

There is a negligible wastage of the product during the installation, and there is a diesel consumption of 4,1 MJ per declared unit. This diesel is used in a construction machine placing and installing the Glasopor.

	Unit	Value
Auxiliary	kg	0
Water consumption	m ³	0
Electricity consumption	MJ	0
Other energy carriers	MJ	4.1
Material loss	kg	0
Output materials from waste treatment	kg	0
Dust in the air	kg	0

LCA: Results

The results reflect the declared unit from cradle to factory gate (A-1 to A3), as well as transportation to construction site (A4) and installation of the product (A5).

Syste	System boundaries (X=included, MND= module not declared, MNR=module not relevant)															
Pro	duct sta	age	Assem	nby stage		Use stage End of life stage								Beyond the system boundaries		
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling-potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Х	Х	Х	Х	Х	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND

Environme	Environmental impact												
Parameter	Unit	A1-A3	A4	A5									
GWP	kg CO ₂ -eqv	3.85E+01	5.81E-04	3.71E-01									
ODP	kg CFC11-eqv	5.95E-06	1.12E-10	6.73E-08									
POCP	kg C ₂ H ₄ -eqv	1.07E-02	1.00E-07	7.41E-05									
AP	kg SO ₂ -eqv	9.68E-02	1.78E-06	2.82E-03									
EP	kg PO₄ ³⁻ -eqv	2.06E-02	5.70E-07	6.56E-04									
ADPM	kg Sb-eqv	2.80E-05	1.85E-09	1.25E-07									
ADPE	MJ	4.89E+02	9.35E-03	5.38E+00									

GWP Global warming potential; ODP Depletion potential of the stratospheric ozone layer; POCP Formation potential of tropospheric photochemical oxidants; AP Acidification potential of land and water; EP Eutrophication potential; ADPM Abiotic depletion potential for non fossil resources; ADPE Abiotic depletion potential for fossil resources

<u>Glas</u>opor

Resource	use						
Parameter	Unit	A1-A3	A4	A5			
RPEE	MJ	6.87E+01	5.99E-04	3.10E-02			
RPEM	MJ	9.38E+00	0.00E+00	2.40E-02			
TPE	MJ	7.81E+01	5.99E-04	3.77E-05			
NRPE	MJ	5.05E+02	9.55E-03	0.00E+00			
NRPM	MJ	0.00E+00	0.00E+00	0.00E+00			
TRPE	MJ	5.05E+02	9.55E-03	0.00E+00			
SM	kg	1.80E+02	0.00E+00	0.00E+00			
RSF	MJ	0.00E+00	0.00E+00	0.00E+00			
NRSF	MJ	0.00E+00	0.00E+00	0.00E+00			
W	m ³	6.72E-02	3.65E-06	0.00E+00			

RPEE Renewable primary energy resources used as energy carrier; RPEM Renewable primary energy resources used as raw materials; TPE Total use of renewable primary energy resources; NRPE Non renewable primary energy resources used as energy carrier; NRPM Non renewable primary energy resources used as materials; TRPE Total use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; W Use of net fresh water.

End of life - Waste

Parameter	Unit	A1-A3	A4	A5									
HW	kg	2.76E-04	7.54E-09	2.42E-06									
NHW	kg	4.42E+00	9.22E-04	2.40E-02									
RW	kg	3.29E-03	6.26E-08	3.77E-05									

HW Hazardous waste disposed; NHW Non hazardous waste disposed; RW Radioactive waste disposed

End of life - Output flow								
Parameter	Unit	A1-A3	A4	A5				
CR	kg	0.00E+00	0.00E+00	0.00E+00				
MR	kg	1.48E-02	0.00E+00	0.00E+00				
MER	kg	0.00E+00	0.00E+00	0.00E+00				
EEE	MJ	8.99E-01	0.00E+00	0.00E+00				
ETE	MJ	9.89E+00	0.00E+00	0.00E+00				

CR Components for reuse; MR Materials for recycling; MER Materials for energy recovery; EEE Exported electric energy; ETE Exported thermal energy.

Reading example: $9,0 \text{ E}-03 = 9,0^{*}10^{-3} = 0,009$

Glasopor

Additional Norwegian requirements

Greenhous gas emission from the use of electricity in the manufacturing phase

National consumption mix with import on low woltage (production of transmission lines, in addition to direct emissions and losses in grid) are applied electricity for the manufacturing prosess (A3).

Data source	Amount	Unit
Ecoinvent v3.5 (2018)	31.7	CO ₂ -eqv/kWh

Dangerous substances

- The product contains no substances given by the REACH Candidate list or the Norwegian priority list
- The product contains substances given by the REACH Candidate list or the Norwegian priority list that are less than 0,1 % by weight.
- The product contains dangerous substances, more than 0,1% by weight, given by the REACH Candidate List or the Norwegian Priority list, see table.
- ^D The product contains no substances given by the REACH Candidate list or the Norwegian priority list. The product is classified as hazardous waste (Avfallsforskiften, Annex III), see table.

Transport

There is no central warehouse for Glasopor.

Indoor environment

The product is for outdooruse and the effect on indoor environment is not relevant.

Carbon footprint

Carbon footprint has not been worked out for the product.

<u>Glas</u>opor

Bibliography	
ISO 14025:2010	Environmental labels and declarations - Type III environmental declarations - Principles and procedures
ISO 14044:2006	Environmental management - Life cycle assessment - Requirements and guidelines
EN 15804:2012+A1:2013	Sustainability of construction works - Environmental product declaration - Core rules for the product category of construction products
ISO 21930:2007	Sustainability in building construction - Environmental declaration of building products
Ecoinvent v3.5	Swiss Centre of Life Cycle Inventories. www.ecoinvent.ch
IBU (2017)	PCR Guidance texts for Building-Related Products and Services. Part B: Requirements on the EPD for Lightweight aggregates / Bulk granulate.
Prestrud (2019)	LCA-report for Glasopor AS. Report OR.XX.19 from Østfoldforskning, Kråkerøy, Norway.
Raadal et al. (2009).	Raadal, H. L., Modahl, I. S. & Lyng, K-A. (2009). Klimaregnskap for avfallshåndtering, Fase I og II. Oppdragsrapport nr 18.09 fra Østfoldforskning, Norge
The Norwegian EPD foundation (2017)	Product Category Rules. Part A: Construction products and services. EPD-Norge.

	Publisher	Phone:	+47 97722020
epd-norge.no	The Norwegian EPD Foundation		
epd-norge.no	Post Box 5250 Majorstuen, 0303 Oslo	e-mail:	post@epd-norge.no
®	Norway	web	www.epd-norge.no
	Owner of the declaration	Phone:	+47 906 46 147
Glasopor	Glasopor AS		
Glasopol	Onsøy Stasjon 15	e-mail:	svend.aage.larsen@sirkel.no
_	1615 Fredrikstad, Norway	web	www.glasopor.no
	Author of the Life Cycle Assessment	Phone:	+47 69 35 11 00
🕐 Østfoldforskning	Kjersti Prestrud	Fax	+47 69 34 24 94
	Ostfold Research	e-mail:	<pre>post@ostfoldforskning.no</pre>
	Stadion 4, 1671 Kråkerøy, Norway	web	www.ostfoldforskning.no