

ENVIRONMENTAL PRODUCT DECLARATION

in accordance with ISO 14025, ISO 21930 and EN 15804

Dalapro Habito Joint

Saint-Gobain Sweden AB, Scanspac

Dalapro®

www.epd-norge.no

General information Product: Owner of the declaration: Dalapro Habito Joint Saint-Gobain Sweden AB, Scanspac Contact person: Christian Nilsson Phone: +46 (0)19-46 34 00 e-mail: info@dalapro.se Program operator: Manufacturer: The Norwegian EPD Foundation Saint-Gobain Sweden AB, Scanspac Pb. 5250 Majorstuen, 0303 Oslo Phone: +47 JÏÏ ÁGGÁ€G€ e-mail: post@epd-norge.no Declaration number: ÞÒÚÖËTĨ Î FE H ËÒÞ Place of production: Saint Gobain Sweden AB, Scanspac Site: Glanshammar, Kemivägen 7, 70597 Glanshammar, SWEDEN Site: Sala, Norrängsgatan 35, 73338 Sala, SWEDEN ECO Platform reference number: Management system: ISO 9001, ISO 14001 This declaration is based on Product Category Rules: Organisation no: 556241-2592 CEN Standard EN 15804:2012+A1:2013 serves as core PCR. NPCR 009 version 1.0 Statement of liability: Issue date: ĠÈ È€FJ The owner of the declaration shall be liable for the underlying Valid to: Ĝ È È⊖G information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences. **Declared unit:** Year of study: 1 kg Dalapro Habito Joint 2017 Declared unit with option: Comparability: EPD of construction products may not be comparable if they not A1.A2.A3.A4 comply with EN 15804 and seen in a building context. **Functional unit:** Author of the Life Cycle Assessment: The declaration is developed using eEPD v3.0 from LCA.no Approval: Company specific data are: Collected/registered by: Ellinor Johansson Internal verification by: Christian Nilsson Verification: Approved: Independent verification of data, other environmental information and the declaration according to ISO14025:2010, § 8.1.3 and § 8.1.4 External Third party verifier: Sign and Roming Senior Research Scientist, Anne Rønning Håkon Hauan

(Independent verifier approved by EPD Norway)

Managing Director of EPD-Norway

Product

Product description:

Dalapro Habito Joint is a revolution in ready mixed hand fillers with superior properties on impact resistance and surface hardness. Special formulation guarantees the best adhesion for papertape jointing on Habito drywalls. Suitable for areas like schools, daycare centers, apartments and hospitals. Dalapro Habito Joint could also be used on standard drywall.

Dalapro Habito Joint is approved for installing cornerbeads.
MATERIAL CONSUMPTION: For jointing approximiatley 0,3 liter / linear meter.

Product specification

Packaging: 10-litre plastic buckets.

Materials	
Filler Dolomite	55-75%
Water	20-50%
Binder	2,5-10%
Additive	1-3%

Technical data:

Binding agent: Latex co-polymer

Solvent: Water

Grain size: Max. 0.15 mm

pH: Approx. 9 Colour: Grey

Market:

Europe

Reference service life, product

Filler has a limited shelf life and is date-marked. Unopened packaging can be kept in a dark place, free from frost, for up to 12 months. Containers that have been opened must be sealed well.

Reference service life, building

Not part of the declaration.

LCA: Calculation rules

Declared unit:

1 kg Dalapro Habito Joint

Cut-off criteria:

All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

Allocation:

The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

Data quality:

Specific data for the product composition are provided by the manufacturer. They represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on registered EPDs according to EN 15804, Ostfold Research databases, ecoinvent and other LCA databases. The data quality of the raw materials in A1 is presented in the table below.

Materials	Source	Data quality	Year
Chemicals	Chemicals below cut-off	No data	0
Cellulose Ether	ecoinvent 3.4	Database	2017
Filler	ecoinvent 3.4	Database	2017
Packaging	ecoinvent 3.4	Database	2017
Water	ecoinvent 3.4 Alloc Rec	Database	2017
Packaging	Modified ecoinvent 3.4	Database	2017

System boundary:

Additional technical information:

In combination with Certain Teed Marco Joint Tape, Dalapro Habito Joint is approved according to CE EN 13963 for jointing on Habito and standard drywall. Produced in liasion with ISO 9001 and ISO 14001.

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Transport from production place to user (A4)

Туре	Capacity utilisation (incl. return) %	Type of vehicle	Distance km	Fuel/Energy consumption	Unit	Value (I/t)
Truck	55,0 %	Truck, lorry over 32 tonnes, EURO 5	300	0,022823	l/tkm	6,85
Railway					l/tkm	
Boat					l/tkm	
Other Transportation					l/tkm	

LCA: Results

System boundaries (X=included, MND=module not declared, MNR=module not relevant)

Product stage			instal	ruction llation age		User stage				End of I	ife stage	9	Beyond the system bondaries			
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De- construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling- potential
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	. D
Х	Х	Х	Х	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	. MND

Environmental impact

Parameter	Unit	A1	A2	А3	A4
GWP	kg CO ₂ -eq	2,28E-01	4,40E-03	4,51E-03	2,62E-02
ODP	kg CFC11 -eq	1,65E-08	8,58E-10	1,83E-09	5,10E-09
POCP	kg C ₂ H ₄ -eq	1,16E-04	7,12E-07	7,69E-07	4,23E-06
АР	kg SO ₂ -eq	1,90E-03	1,43E-05	1,48E-05	8,51E-05
EP	kg PO ₄ ³⁻ -eq	4,03E-04	3,20E-06	2,45E-06	1,90E-05
ADPM	kg Sb -eq	1,27E-06	9,94E-09	1,53E-08	5,91E-08
ADPE	MJ	4,21E+00	6,91E-02	5,57E-02	4,11E-01

GWP Global warming potential; ODP Depletion potential of the stratospheric ozone layer; POCP Formation potential of tropospheric photochemical oxidants; AP Acidification potential of land and water; EP Eutrophication potential; ADPM Abiotic depletion potential for non fossil resources; ADPE Abiotic depletion potential for fossil resources

Reading example: 9,0 E-03 = 9,0*10-3 = 0,009

*INA Indicator Not Assessed

Dalapro[®]

Resource use

Parameter	Unit	A1	A2	А3	A4
RPEE	MJ	9,47E-01	1,25E-03	7,21E-02	7,42E-03
RPEM	MJ	5,38E-01	0,00E+00	0,00E+00	0,00E+00
TPE	MJ	1,49E+00	1,25E-03	7,21E-02	7,42E-03
NRPE	MJ	4,88E+00	7,12E-02	2,10E-01	4,23E-01
NRPM	MJ	1,24E+00	0,00E+00	0,00E+00	0,00E+00
TRPE	MJ	6,13E+00	7,12E-02	2,10E-01	4,23E-01
SM	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00
RSF	MJ	0,00E+00	0,00E+00	6,93E-05	0,00E+00
NRSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00
W	m ³	2,78E-03	1,68E-05	4,75E-04	9,98E-05

RPEE Renewable primary energy resources used as energy carrier; RPEM Renewable primary energy resources used as raw materials; TPE Total use of renewable primary energy resources; NRPE Non renewable primary energy resources used as energy carrier; NRPM Non renewable primary energy resources used as materials; TRPE Total use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; W Use of net fresh water

Reading example: 9,0 E-03 = 9,0*10-3 = 0,009

*INA Indicator Not Assessed

End of life - Waste

Parameter	Unit	A1	A2	А3	A4
HW	kg	3,64E-06	3,79E-08	1,47E-04	2,25E-07
NHW	kg	1,29E-01	6,46E-03	3,25E-03	3,84E-02
RW	kg	INA*	INA*	INA*	INA*

HW Hazardous waste disposed; NHW Non hazardous waste disposed; RW Radioactive waste disposed

Reading example: 9,0 E-03 = 9,0*10-3 = 0,009

*INA Indicator Not Assessed

End of life - Output flow

Parameter	Unit	A1	A2	А3	A4
CR	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00
MR	kg	0,00E+00	0,00E+00	8,26E-04	0,00E+00
MER	kg	0,00E+00	0,00E+00	5,87E-03	0,00E+00
EEE	MJ	INA*	INA*	INA*	INA*
ETE	MJ	INA*	INA*	INA*	INA*

CR Components for reuse; MR Materials for recycling; MER Materials for energy recovery; EEE Exported electric energy; ETE Exported thermal energy

Reading example: 9.0 E-03 = 9.0*10-3 = 0.009

*INA Indicator Not Assessed

Additional Norwegian requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Data source	Amount	Unit	
El-mix, Sweden (kWh)	ecoinvent 3.4 Alloc Rec	42,67	g CO2-ekv/kWh	

Dangerous substances

The product contains no substances given by the REACH Candidate list or the Norwegian priority list.

Indoor environment

Emission test performed by Eurofins according to the ISO 16000 standard.

Bibliography

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures.

ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines.

EN 15804:2012+A1:2013 Environmental product declaration - Core rules for the product category of construction products.

ISO 21930:2017 Sustainability in buildings and civil engineering works. Core rules for environmental product declarations of construction products. ecoinvent v3, Alloc Rec, Swiss Centre of Life Cycle Inventories.

Iversen et al., (2018) eEPD v3.0 - Background information for EPD generator system.

epd-norge.no The Norwegian EPD Foundation	Program operator and publisher The Norwegian EPD Foundation	Phone:	+47 JÏÏÁGGÁ€G€
The Norwegian EPD Foundation	Post Box 5250 Majorstuen, 0303 Oslo	e-mail:	post@epd-norge.no
® The Norwegian Er bir oundation	0303 Oslo Norway	web:	www.epd-norge.no
	Owner of the declaration	Phone:	+46 (0)19-46 34 00
Dalapro °	Saint-Gobain Sweden AB, Scanspac	Fax:	
Dalapio	Kemivägen 7	e-mail:	info@dalapro.se
	SE-705 97 Glanshammar	web:	www.dalapro.se
	Author of the Life Cycle Assessment	Phone:	+47 916 50 916
(LCA)	LCA.no AS	Fax:	
(LCA)	Dokka 1C	e-mail:	post@lca.no
.no	1671 Kråkerøy	web:	www.lca.no
	Developer of EPD generator	Phone:	+47 916 50 916
$(1 \subset A)$	LCA.no AS		
(LCA)	Dokka 1C	e-mail:	post@lca.no
.no	1671 Kråkerøy	web:	www.lca.no